skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1920242

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ozonolysis of model nitrogen-containing alkenes shows a wide range of reactivity and formation of toxic products. 
    more » « less
  2. Biomass burning organic aerosol (BBOA) is one of the largest sources of organics in the atmosphere. Mineral dust and biomass burning smoke frequently co-exist in the same atmospheric environment. Common biomass burning compounds, such as dihydroxybenzenes and their derivatives, are known to produce light-absorbing, water-insoluble polymeric particles upon reaction with soluble Fe( iii ) under conditions characteristic of aerosol liquid water. However, such reactions have not been tested in realistic mixtures of BBOA compounds. In this study, model organic aerosol (OA), meant to replicate BBOA from smoldering fires, was generated through the pyrolysis of Canary Island pine needles in a tube furnace at 300, 400, 500, 600, 700, and 800 °C in nitrogen gas, and the water-soluble fractions were reacted with iron chloride under dark, acidic conditions. We utilized spectrophotometry to monitor the reaction progress. For OA samples produced at lower temperatures (300 and 400 °C), particles (P300 and P400) formed in solution, were syringe filtered, and extracted in organic solvents. Analysis was conducted with ultrahigh pressure liquid chromatography coupled to a photodiode array spectrophotometer and a high-resolution mass spectrometer (UHPLC-PDA-HRMS). For OA samples formed at higher pyrolysis temperatures (500–800 °C), water-insoluble, black particles (P500–800) formed in solution. In contrast to P300 and P400, P500–800 were not soluble in common solvents. Scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS) and transmission electron microscopy (TEM) were used to image P600 and determine bulk elemental composition. Electron microscopy revealed that P600 had fractal morphology, reminiscent of soot particles, and contained no detectable iron. These results suggest that light-absorbing aerosol particles can be produced from Fe( iii )-catalyzed reactions in aging BBOA plumes produced from smoldering combustion in the absence of any photochemistry. This result has important implications for understanding the direct and indirect effects of aged BBOA on climate. 
    more » « less
  3. Neonicotinoids (NNs) are commonly found throughout the environment on surfaces such as seeds, soil, vegetation, and blowing dust particles. However, there is a paucity of data on the kinetics and oxidation products formed on contact with the atmosphere which limits understanding of their potentially far-reaching impacts. In this study, in situ attenuated total reflectance (ATR) FTIR spectroscopy was used to investigate the OH oxidation of thin films of three solid NNs, imidacloprid (IMD), dinotefuran (DNF) and clothianidin (CLD) at 295 ± 3 K. The experimentally measured reaction probabilities based on initial rates of NN loss are (1.6 ± 0.8) × 10 −2 for IMD, (1.5 ± 0.6) × 10 −2 for DNF and (0.9 ± 0.2) × 10 −2 for CLD (±1 σ ), suggesting initial NN lifetimes with respect to OH of 10–17 days. The kinetics were interpreted using a multiphase kinetics model, KM-SUB, which showed that the OH uptake and reaction occurred primarily in the surface layer. Products identified by mass spectrometry included carbonyl-, alcohol- and olefin-containing species formed via hydrogen abstraction from aliphatic C–H groups. Additionally, carbonyl-containing desnitro and urea derivative products were observed from secondary reactions of the initially formed photodegradation products. Reaction with OH will contribute to NN loss both during the day as well as at night when there are non-photolytic sources of this radical. Thus, OH reactions with both the parent neonicotinoid and its photodegradation products should be considered in assessing their environmental impacts. 
    more » « less
  4. Secondary organic aerosol (SOA) plays a critical, yet uncertain, role in air quality and climate. Once formed, SOA is transported throughout the atmosphere and is exposed to solar UV light. Information on the viscosity of SOA, and how it may change with solar UV exposure, is needed to accurately predict air quality and climate. However, the effect of solar UV radiation on the viscosity of SOA and the associated implications for air quality and climate predictions is largely unknown. Here, we report the viscosity of SOA after exposure to UV radiation, equivalent to a UV exposure of 6 to 14 d at midlatitudes in summer. Surprisingly, UV-aging led to as much as five orders of magnitude increase in viscosity compared to unirradiated SOA. This increase in viscosity can be rationalized in part by an increase in molecular mass and oxidation of organic molecules constituting the SOA material, as determined by high-resolution mass spectrometry. We demonstrate that UV-aging can lead to an increased abundance of aerosols in the atmosphere in a glassy solid state. Therefore, UV-aging could represent an unrecognized source of nuclei for ice clouds in the atmosphere, with important implications for Earth’s energy budget. We also show that UV-aging increases the mixing times within SOA particles by up to five orders of magnitude throughout the troposphere with important implications for predicting the growth, evaporation, and size distribution of SOA, and hence, air pollution and climate. 
    more » « less
  5. Abstract. Secondary organic aerosol (SOA) generated from the photooxidationof aromatic compounds in the presence of oxides of nitrogen (NOx) isknown to efficiently absorb ultraviolet and visible radiation. With exposureto sunlight, the photodegradation of chromophoric compounds in the SOAcauses this type of SOA to slowly photobleach. These photodegradationreactions may occur in cloud droplets, which are characterized by lowconcentrations of solutes, or in aerosol particles, which can have highlyviscous organic phases and aqueous phases with high concentrations ofinorganic salts. To investigate the effects of the surrounding matrix on therates and mechanisms of photodegradation of SOA compounds, SOA was preparedin a smog chamber by photooxidation of toluene in the presence of NOx.The collected SOA was photolyzed for up to 24 h using near-UV radiation(300–400 nm) from a xenon arc lamp under different conditions: directly onthe filter, dissolved in pure water, and dissolved in 1 M ammonium sulfate.The SOA mass absorption coefficient was measured as a function ofirradiation time to determine photobleaching rates. Electrospray ionizationhigh-resolution mass spectrometry coupled to liquid chromatographyseparation was used to observe changes in SOA composition resulting from theirradiation. The rate of decrease in SOA mass absorption coefficient due tophotobleaching was the fastest in water, with the presence of 1 M ammoniumsulfate modestly slowing down the photobleaching. By contrast,photobleaching directly on the filter was slower. The high-resolutionmass spectrometry analysis revealed an efficient photodegradation ofnitrophenol compounds on the filter but not in the aqueous phases, withrelatively little change observed in the composition of the SOA irradiatedin water or 1 M ammonium sulfate despite faster photobleaching than in theon-filter samples. This suggests that photodegradation of nitrophenolscontributes much more significantly to photobleaching in the organic phasethan in the aqueous phase. We conclude that the SOA absorption coefficientlifetime with respect to photobleaching and lifetimes of individualchromophores in SOA with respect to photodegradation will depend strongly onthe sample matrix in which SOA compounds are exposed to sunlight. 
    more » « less
  6. Abstract. The viscosity of secondary organic aerosol (SOA) is needed to improve predictions of air quality, climate, and atmospheric chemistry. Many techniques have been developed to measure the viscosity of micrometer-sized materials at room temperature; however, few techniques are able to measure viscosity as a function of temperature for these small sample sizes. SOA in the troposphere experience a wide range of temperatures, so measurement of viscosity as a function of temperature is needed. To address this need, a new method was developed based on hot-stage microscopy combined with fluid dynamics simulations. The current method can be used to determine viscosities in the range of roughly 104 to 108 Pa s at temperatures greater than room temperature. Higher viscosities may be measured if experiments are carried out over multiple days. To validate our technique, the viscosities of 1,3,5-tris(1-naphthyl)benzene and phenolphthalein dimethyl ether were measured and compared with values reported in the literature. Good agreement was found between our measurements and literature data. As an application to SOA, the viscosity as a function of temperature for lab-generated farnesene SOA material was measured, giving values ranging from 3.1×106 Pa s at 51 ∘C to 2.6×104 Pa s at 67 ∘C. We fit the temperature-dependent data to the Vogel–Fulcher–Tammann (VFT) equation and obtained a fragility parameter for the material of 7.29±0.03, whichis very similar to the fragility parameter of 7 reported for α-pinene SOA by Petters and Kasparoglu (2020). These results demonstrate that the viscosity as a function of temperature can be measured for lab-generated SOA material using our hot-stage microscopy method. 
    more » « less
  7. null (Ed.)