Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Nanostructured materials have enabled new ways of controlling the light–matter interaction, opening new routes for exciting applications, in display technologies and colorimetric sensing, among others. In particular, metallic nanoparticles permit the production of color structures out of colorless materials. These plasmonic structural colors are sensitive to the environment and thus offer an interesting platform for sensing. Here, a self‐assembly of aluminum nanoparticles in close proximity of a mirror is spaced by an ultrathin poly(N‐isopropylacrylamide) (PNIPAM) layer. Hybridizing the plasmonic system with the active polymer layer, a thermoresponsive gap‐plasmon architecture is formed that transduces changes in the temperature and relative humidity of the environment into color changes. By harnessing the environmentally induced structural changes of PNIPAM, it was estimated from the finite difference time domain simulation that the resonance can be tuned 7 nm per every 1 nm change in thickness, resulting in color variation. Importantly, these fully reversible changes can be used for reusable powerless humidity and temperature colorimetric sensing. Crucially if condensation on the structure happens, the polymer layer is deformed beyond recovery and the colors are washed away. We leverage this effect to produce tamper‐proof dew labels that a straightforward smartphone app can read by taking a picture.more » « less
-
Monitoring chemical levels is crucial for safeguarding both the environment and public health. Elevated levels of ammonia, for instance, can harm both humans and aquatic ecosystems, often indicating contamination from agriculture, industry, or sewage. Developing portable, high-resolution, and affordable methods for in situ monitoring of ammonia is thus imperative. Plasmonic sensors offer a promising solution, detecting ammonia by correlating changes in their optical response to the target analyte’s concentration. While they are highly sensitive and can be fabricated in a variety of portable and user-friendly formats, some still require reagents or expensive optical equipment, which hinder their widespread adoption. Here, we present a self-assembled nanoplasmonic colorimetric sensor capable of directly detecting ammonia concentrations in aqueous matrices. The proposed sensor exploits the plasmonic resonance of the nanostructures to transduce changes in the chemical environment into alterations in color, offering a label-free method for real-time analysis. The sensor is fabricated using a self-assembling technique compatible with low-cost mass production based on aluminum and aluminum oxide, ensuring affordability and avoiding the use of other toxic chemicals. We developed a model to predict ammonia concentrations based on visible color change of the sensor, achieving a detection limit of 8.5 ppm. Furthermore, to address the need for on-site detection, we integrated smartphone technology for real-time color change analysis, eliminating the need for expensive, bulky optical instruments. Indeed, our approach offers a cost-effective, portable, and user-friendly solution for ammonia detection in water without the need for chemical reagents or spectrometers, making it ideal for field applications. Interestingly, this platform extends its applicability beyond ammonia detection, enabling the monitoring of various chemicals using a smartphone, without the need for any additional costly equipment.more » « less
-
Nanostructured plasmonic materials can lead to the extremely compact pixels and color filters needed for next-generation displays by interacting with light at fundamentally small length scales. However, previous demonstrations suffer from severe angle sensitivity, lack of saturated color, and absence of black/gray states and/or are impractical to integrate with actively addressed electronics. Here, we report a vivid self-assembled nanostructured system which overcomes these challenges via the multidimensional hybridization of plasmonic resonances. By exploiting the thin-film growth mechanisms of aluminum during ultrahigh vacuum physical vapor deposition, dense arrays of particles are created in near-field proximity to a mirror. The sub-10-nm gaps between adjacent particles and mirror lead to strong multidimensional coupling of localized plasmonic modes, resulting in a singular resonance with negligible angular dispersion and ∼98% absorption of incident light at a desired wavelength. The process is compatible with arbitrarily structured substrates and can produce wafer-scale, diffusive, angle-independent, and flexible plasmonic materials. We then demonstrate the unique capabilities of the strongly coupled plasmonic system via integration with an actively addressed reflective liquid crystal display with control over black states. The hybrid display is readily programmed to display images and video.more » « less
An official website of the United States government
