Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Holistic processing of face and non-face stimuli has been framed as a perceptual strategy, with classic hallmarks of holistic processing, such as the composite effect, reflecting a failure of selective attention, which is a consequence of this strategy. Further, evidence that holistic processing is impacted by training different patterns of attentional prioritization suggest that it may be a result of learned attention to the whole, which renders it difficult to attend to only part of a stimulus. If so, holistic processing should be modulated by the same factors that shape attentional selection, such as the probability that distracting or task-relevant information will be present. In contrast, other accounts suggest that it is the match to an internal face template that triggers specialized holistic processing mechanisms. Here we probed these accounts by manipulating the probability, across different testing sessions, that the task-irrelevant face part in the composite face task will contain task-congruent or -incongruent information. Attentional accounts of holistic processing predict that when the probability that the task-irrelevant part contains congruent information is low (25%), holistic processing should be attenuated compared to when this probability is high (75%). In contrast, template-based accounts of holistic face processing predict that it will be unaffected by manipulation given the integrity of the faces remains intact. Experiment 1 found evidence consistent with attentional accounts of holistic face processing and Experiment 2 extends these findings to holistic processing of non-face stimuli. These findings are broadly consistent with learned attention accounts of holistic processing.more » « less
-
Abstract This perspective piece discusses a set of attentional phenomena that are not easily accommodated within current theories of attentional selection. We call these phenomena attentional platypuses, as they allude to an observation that within biological taxonomies the platypus does not fit into either mammal or bird categories. Similarly, attentional phenomena that do not fit neatly within current attentional models suggest that current models are in need of a revision. We list a few instances of the “attentional platypuses” and then offer a new approach, that we term dynamically weighted prioritization, stipulating that multiple factors impinge onto the attentional priority map, each with a corresponding weight. The interaction between factors and their corresponding weights determines the current state of the priority map which subsequently constrains/guides attentional allocation. We propose that this new approach should be considered as a supplement to existing models of attention, especially those that emphasize categorical organizations. This article is categorized under:Psychology > AttentionPsychology > Perception and PsychophysicsNeuroscience > Cognitionmore » « less
-
Visual short-term memory (VSTM) is an essential store that creates continuous representations from disjointed visual input. However, severe capacity limits exist, reflecting constraints in supporting brain networks. VSTM performance shows spatial biases predicted by asymmetries in the brain based upon the location of the remembered object. Visual representations are retinotopic, or relative to location of the representation on the retina. It therefore stands to reason that memory performance may also show retinotopic biases. Here, eye position was manipulated to tease apart retinotopic coordinates from spatiotopic coordinates, or location relative to the external world. Memory performance was measured while participants performed a color change-detection task for items presented across the visual field while subjects fixated central or peripheral position. VSTM biases reflected the location of the stimulus on the retina, regardless of where the stimulus appeared on the screen. Therefore, spatial biases occur in retinotopic coordinates in VSTMand suggest a fundamental link between behavioral VSTM measures and visual representations.more » « less
-
Abstract Objects can be described in terms of low-level (e.g., boundaries) and high-level properties (e.g., object semantics). While recent behavioral findings suggest that the influence of semantic relatedness between objects on attentional allocation can be independent of task-relevance, the underlying neural substrate of semantic influences on attention remains ill-defined. Here, we employ behavioral and functional magnetic resonance imaging measures to uncover the mechanism by which semantic information increases visual processing efficiency. We demonstrate that the strength of the semantic relatedness signal decoded from the left inferior frontal gyrus: 1) influences attention, producing behavioral semantic benefits; 2) biases spatial attention maps in the intraparietal sulcus, subsequently modulating early visual cortex activity; and 3) directly predicts the magnitude of behavioral semantic benefit. Altogether, these results identify a specific mechanism driving task-independent semantic influences on attention.more » « less
An official website of the United States government
