skip to main content


Search for: All records

Award ID contains: 1921946

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The degree of rate control (DRC) quantitatively identifies the kinetically relevant (sometimes known as rate‐limiting) steps of a complex reaction network. This concept relies on derivatives which are commonly implemented numerically, for example, with finite differences (FDs). Numerical derivatives are tedious to implement, and can be problematic, and unstable or unreliable. In this study, we demonstrate the use of automatic differentiation (AD) in the evaluation of the DRC. AD libraries are increasingly available through modern machine learning frameworks. Compared with the FDs, AD provides solutions with higher accuracy with lower computational cost. We demonstrate applications in steady‐state and transient kinetics. Furthermore, we illustrate a hybrid local‐global sensitivity analysis method, the distributed evaluation of local sensitivity analysis, to assess the importance of kinetic parameters over an uncertain space. This method also benefits from AD to obtain high‐quality results efficiently.

     
    more » « less
  2. Surface segregation is a phenomenon common to all multicomponent materials and one that plays a critical role in determining their surface properties. Comprehensive studies of surface segregation versus bulk composition in ternary alloys have been prohibitive because of the need to study many different compositions. In this work, high-throughput low-energy He+ ionscattering spectra and energy-dispersive X-ray spectra were collected from a CuxAuyPd1−x−y composition spread alloy film under ultrahigh vacuum conditions. These have been used to quantify surface segregation across the entire CuxAuyPd1−x−y composition space (x = 0 → 1 and y = 0 → 1 − x). Surface compositions at 164 different bulk compositions were measured at 500 and 600 K. At both temperatures, Au shows the greatest tendency for segregation to the top-most surface while Pd is always depleted from the surface. Higher temperatures enhance the Au segregation. Segregation at most of the binary alloy bulk compositions matches with observations previously reported in the literature. However, surface compositions in the CuPd B2 composition region reveal segregation profiles that are nonmonotonic in bulk alloy composition. These were not observable in prior studies because of their limited resolution of composition space. An extended Langmuir−MacLean model, which describes ternary alloy segregation, has been used to analyze experimental data from the ternary alloys and to estimate pair-wise segregation free energies and segregation equilibrium constants. The ability to study surface segregation across the ternary alloy composition space with high-throughput methods has been validated, and the impact of bulk alloy phase on surface segregation is demonstrated and discussed. 
    more » « less