skip to main content


Search for: All records

Award ID contains: 1921949

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Whereas low-temperature ferroelectrics have a well-understood ordered spatial dipole arrangement, the fate of these dipoles in paraelectric phases remains poorly understood. Using density functional theory (DFT), we find that unlike the case in conventional non-polar ABO3 compounds illustrated here for cubic BaZrO3, the origin of the distribution of the B site off-centering in cubic paraelectric such as BaTiO3 is an intrinsic, energy stabilizing symmetry breaking. Minimizing the internal energy E of a constrained cubic phase already reveals the formation of a distribution of intrinsic local displacements that (i) mimic the symmetries of the low-temperature phases, while (ii) being the precursors of what finite temperature DFT Molecular Dynamics finds as thermal motifs. The implications of such symmetry breaking on the microscopic structures and anomalous properties in these kinds of PE materials are discussed. 
    more » « less
  2. null (Ed.)
  3. Traditional band theory of perfect crystalline solids often uses as input the structure deduced from diffraction experiments; when modeled by the minimal unit cell this often produces a spatially averaged model. The present study illustrates that this is not always a safe practice unless one examines if the intrinsic bonding mechanism is capable of benefiting from the formation of a distribution of lower symmetry local environments that differ from the macroscopically averaged structure. This can happen either due to positional, or due to magnetic symmetry breaking. By removing the constraint of a small crystallographic cell, the energy minimization in the density functional theory finds atomic and spin symmetry breaking, not evident in conventional diffraction experiments but being found by local probes such as atomic pair distribution function analysis. Here we report that large atomic and electronic anomalies in bulk tetragonal FeSe emerge from the existence of distributions of local positional and magnetic moment motifs. The found symmetry broken motifs obtained by minimization of the internal energy represent what chemical bonding in tetragonal phase prefers as an intrinsic energy lowering (stabilizing) static distortions. This explains observations of band renormalization, predicts orbital order and enhanced nematicity, and provides unprecedented close agreement with spectral function measured by photoemission and local atomic environment revealed by pair distribution function. While the symmetry-restricted strong correlation approach has been argued previously to be the exclusive theory needed for describing the main peculiarities of FeSe, we show here that the symmetry-broken mean-field approach addresses numerous aspects of the problem, provides intuitive insight into the electronic structure, and opens the door for large-scale mean-field calculations for similar d-electron quantum materials. 
    more » « less