Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract This short review examines solid reaction mediums—specifically oxygen, CO2, and carbon carriers—within the framework of Chemical Looping (CL) to illuminate various CO2utilization pathways. The thermodynamic consideration for carrier selection is first discussed. This is followed by a summary of the key carrier types investigated to date, with an emphasis on elucidating the roles of compositional, structural, and surface properties of the various carriers toward their reactive performances. Besides assessing the performances of various oxygen carriers, their long-term performance, potential deactivation mechanism in the presence of CO2,and strategies for their reactivation are also discussed in the context of chemical looping dry reforming of methane (CLDRM). While relatively underexplored, the current status of development, advantages, and potential limitations of CO2carriers in sorbent looping dry reforming of methane (SLDRM) and carbon carriers in chemical looping methane cracking (CLMC) are also reviewed and discussed. Emerging topics such as combined carriers are also covered along with a perspective for future research directions. Overall, this review aims to offer insights into the sustainable use of CO2through chemical looping, emphasizing the potential of solid reaction mediums across different carriers and the challenges associated with these solid reaction mediums.more » « less
-
Abstract Sorption-enhanced steam reforming (SESR) of toluene (SESRT) using catalytic CO2sorbents is a promising route to convert the aromatic tar byproducts formed in lignocellulosic biomass gasification into hydrogen (H2) or H2-rich syngas. Commonly used sorbents such as CaO are effective in capturing CO2initially but are prone to lose their sorption capacity over repeated cycles due to sintering at high temperatures. Herein, we present a demonstration of SESRT using A- and B-site doped Sr1−xA’xFe1−yB’yO3−δ(A’ = Ba, Ca; B’ = Co) perovskites in a chemical looping scheme. We found that surface impregnation of 5–10 mol% Ni on the perovskite was effective in improving toluene conversion. However, upon cycling, the impregnated Ni tends to migrate into the bulk and lose activity. This prompted the adoption of a dual bed configuration using a pre-bed of NiO/γ–Al2O3catalyst upstream of the sorbent. A comparison is made between isothermal operation and a more traditional temperature-swing mode, where for the latter, an average sorption capacity of ∼38% was witnessed over five SESR cycles with H2-rich product syngas evidenced by a ratio of H2: COx> 4.0. XRD analysis of fresh and cycled samples of Sr0.25Ba0.75Fe0.375Co0.625O3-δreveal that this material is an effective phase transition sorbent—capable of cyclically capturing and releasing CO2without irreversible phase changes occurring.more » « less
-
Abstract The structural and compositional flexibility of perovskite oxides and their complex yet tunable redox properties offer unique optimization opportunities for thermochemical energy storage (TCES). To improve the relatively inefficient and empirical‐based approaches, a high‐throughput combinatorial approach for accelerated development and optimization of perovskite oxides for TCES is reported here. Specifically, thermodynamic‐based screening criteria are applied to the high‐throughput density functional theory (DFT) simulation results of over 2000 A/B‐site doped SrFeO3−δ. 61 promising TCES candidates are selected based on the DFT prediction. Of these, 45 materials with pure perovskite phases are thoroughly evaluated. The experimental results support the effectiveness of the high‐throughput approach in determining both the oxygen capacity and the oxidation enthalpy of the perovskite oxides. Many of the screened materials exhibit promising performance under practical operating conditions: Sr0.875Ba0.125FeO3−δexhibits a chemical energy storage density of 85 kJ kgABO3−1under an isobaric condition (with air) between 400 and 800 °C whereas Sr0.125Ca0.875Fe0.25Mn0.75O3−δdemonstrates an energy density of 157 kJ kgABO3−1between 400 °C/0.2 atm O2and 1100 °C/0.01 atm O2. An improved set of optimization criteria is also developed, based on a combination of DFT and experimental results, to improve the effectiveness for accelerated development of redox‐active perovskite oxides.more » « less
-
Abstract Styrene is an important commodity chemical that is highly energy and CO2intensive to produce. We report a redox oxidative dehydrogenation (redox-ODH) strategy to efficiently produce styrene. Facilitated by a multifunctional (Ca/Mn)1−xO@KFeO2core-shell redox catalyst which acts as (i) a heterogeneous catalyst, (ii) an oxygen separation agent, and (iii) a selective hydrogen combustion material, redox-ODH auto-thermally converts ethylbenzene to styrene with up to 97% single-pass conversion and >94% selectivity. This represents a 72% yield increase compared to commercial dehydrogenation on a relative basis, leading to 82% energy savings and 79% CO2emission reduction. The redox catalyst is composed of a catalytically active KFeO2shell and a (Ca/Mn)1−xO core for reversible lattice oxygen storage and donation. The lattice oxygen donation from (Ca/Mn)1−xO sacrificially stabilizes Fe3+in the shell to maintain high catalytic activity and coke resistance. From a practical standpoint, the redox catalyst exhibits excellent long-term performance under industrially compatible conditions.more » « less
-
The current study reports LaFe1-xMnxO3−δ redox catalysts (RCs) for CO2-splitting and methane partial oxidation (CH4-POx) in a cyclic redox scheme. Lanthanum (La) was chosen as the A-site cation whereas iron (Fe) and manganese (Mn) were chosen as the B-site cations, respectively. La, Fe, and Mn were incorporated into the perovskite structure (LaFe1-xMnxO3−δ) at various Fe/Mn ratios to tailor the equilibrium oxygen partial pressures for CO2-splitting and methane partial oxidation. Compared to the standalone redox pairs of Fe and Mn (i.e., Fe2O3/Fe3O4, Fe3O4/FeO, and Mn2O3/Mn3O4) which, from a thermodynamic standpoint, favor the complete combustion of CH4, the perovskite structured redox catalysts (RCs, i.e., LaFe1-xMnxO3−δ) favored the selective oxidation of CH4 to syngas. In addition, impregnating the RCs with 1 wt% ruthenium (Ru) led to a significant improvement in their redox kinetics without affecting their redox thermodynamics. The Ru-impregnated, perovskite structured RCs (i.e., LaFeO3, LaFe0.625Mn0.375O3, and LaFe0.5Mn0.5O3 ) exhibited excellent redox performance in terms of the syngas yield (92 – 100%) and CO2 conversion (95 - 98%). Long-term redox testing over Ru-impregnated LaFeO3 and LaFe0.5Mn0.5O3 demonstrated relatively stable performance for 100 redox cycles whereas activity loss was observed for LaFe0.625Mn0.375O3, LaFe0.375Mn0.625O3, and LaMnO3 respectively. Among RCs containing both Mn and Fe, LaFe0.5Mn0.5O3 exhibited the best performance, maintaining satisfactory activity over 100 cycles and higher oxygen capacity. XRD and XPS analysis suggest that the ability to regenerate the perovskite phase under a CO2 environment and a near surface A:B site cation ratio close to the perovskite stoichiometry would likely correspond to more stable performance. Additionally, the inclusion of Mn on the B-site enhances the coke resistance of the redox catalyst when compared to undoped LaFeO3.more » « lessFree, publicly-accessible full text available February 1, 2027
-
Structurally stabilized composites are promising for using phase change materials in high‐temperature thermal energy storage (TES). However, conventional skeleton materials, which typically comprise 30–50 wt% of the composite, mainly provide sensible heat storage and contribute minimally to overall energy density. This study introduces a new class of redox‐active oxide‐molten salt (ROMS) composites that overcome this limitation by combining sensible, latent, and thermochemical heat storage in a single particle. Specifically, porous, redox‐active Ca2AlMnO5+δ(CAM) complex oxide particles were demonstrated as a suitable support matrix, with the pores filled by eutectic NaCl/CaCl2salt. X‐ray diffraction confirms excellent phase compatibility between CAM and the salt. Scanning electron microscopy/energy dispersive X‐ray spectroscopy and nano X‐ray tomography show good salt infiltration and wettability within the CAM pores. Thermogravimetric analysis reveals that a 60 wt% CAM/40 wt% salt composite achieves an energy density of 267 kJ kg−1over a narrow 150 °C window, with ≈50 kJ kg−1from thermochemical storage. Additionally, the composite shows higher thermal conductivity than salt alone, enabling faster energy storage and release. ROMS composites thus represent a novel and efficient solution for high‐performance TES.more » « lessFree, publicly-accessible full text available September 19, 2026
-
Free, publicly-accessible full text available March 7, 2026
An official website of the United States government
