skip to main content


Search for: All records

Award ID contains: 1923929

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 1, 2024
  2. Strain glass is a new strain state discovered recently in ferroelastic systems that is characterized by nanoscale martensitic domains formed through a freezing transition. These nanodomains typically have mottled or tweed morphology depending on the elastic anisotropy of the system. Strain glass transition is a broadly smeared and high order–like transition, taking place within a wide temperature or stress range. It is accompanied by many unique properties, including linear superelasticity with high strength, low modulus, Invar and Elinvar anomalies, and large magnetostriction. In this review, we first discuss experimental characterization and testing that have led to the discovery of the strain glass transition and its unique properties. We then introduce theoretical models and computer simulations that have shed light on the origin and mechanisms underlying the unique characteristics and properties of strain glass transitions. Unresolved issues and challenges in strain glass study are also addressed. Strain glass transition can offer giant elastic strain and ultralow elastic modulus by well-controlled reversible structural phase transformations through defect engineering.

     
    more » « less