skip to main content


Search for: All records

Award ID contains: 1924061

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Although the role of host movement in shaping infectious disease dynamics is widely acknowledged, methodological separation between animal movement and disease ecology has prevented researchers from leveraging empirical insights from movement data to advance landscape scale understanding of infectious disease risk. To address this knowledge gap, we examine how movement behaviour and resource utilization by white‐tailed deer (Odocoileus virginianus) determines blacklegged tick (Ixodes scapularis) distribution, which depend on deer for dispersal in a highly fragmented New York City borough. Multi‐scale hierarchical resource selection analysis and movement modelling provide insight into how deer's movements contribute to the risk landscape for human exposure to the Lyme disease vector–I. scapularis. We find deer select highly vegetated and accessible residential properties which support blacklegged tick survival. We conclude the distribution of tick‐borne disease risk results from the individual resource selection by deer across spatial scales in response to habitat fragmentation and anthropogenic disturbances.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Dataset for the following paper: Cascading effects of mammal host community composition on tick vector occurrence at the urban human-wildlife interface Jonathan Bastard *, Nichar Gregory *, Maria Pilar Fernandez, Michaela Mincone, Olivia Card, Sara Kross, Maria Diuk-Wasser * These authors contributed equally. 
    more » « less
  3. Abstract Background Public green spaces are important for human health, but they may expose visitors to ticks and tick-borne pathogens. We sought to understand, for the first time, visitors’ exposure risk and drivers of tick-preventative behavior in three popular parks on Staten Island, New York City, NY, USA, by integrating tick hazard and park visitors’ behaviors, risk perceptions and knowledge. Methods We conducted tick sampling in three parks, across three site types (open spaces, the edge of open spaces, and trails) and three within-park habitats (maintained grass, unmaintained herbaceous, and leaf litter) to estimate tick density during May-August 2019. Human behavior was assessed by observations of time spent and activity type in each site. We integrated the time spent in each location by park visitors and the tick density to estimate the probability of human-tick encounter. To assess visitors’ tick prevention behaviors, a knowledge, attitude, and practices (KAP) survey was administered. Results Three tick species ( Ixodes scapularis , Amblyomma americanum and Haemaphysalis longicornis) were collected. For all species, the density of nymphs was greatest in unmaintained herbaceous habitats and trails, however, the fewest people entered these hazardous locations. The KAP survey revealed that most respondents ( N  = 190) identified parks as the main location for tick exposure, but most believed they had minimal risk for tick encounter. Consequently, many visitors did not conduct tick checks. People were most likely to practice tick checks if they knew multiple prevention methods and perceived a high likelihood of tick encounter. Conclusions By integrating acarological indices with park visitor behaviors, we found a mismatch between areas with higher tick densities and areas more frequently used by park visitors. However, this exposure risk varied among demographic groups, the type of activities and parks, with a higher probability of human-tick encounters in trails compared to open spaces. Furthermore, we showed that people’s KAP did not change across parks even if parks represented different exposure risks. Our research is a first step towards identifying visitor risk, attitudes, and practices that could be targeted by optimized messaging strategies for tick bite prevention among park visitors. 
    more » « less
  4. Abstract Background The incidence of tick-borne disease has increased dramatically in recent decades, with urban areas increasingly recognized as high-risk environments for exposure to infected ticks. Green spaces may play a key role in facilitating the invasion of ticks, hosts and pathogens into residential areas, particularly where they connect residential yards with larger natural areas (e.g. parks). However, the factors mediating tick distribution across heterogeneous urban landscapes remain poorly characterized. Methods Using generalized linear models in a multimodel inference framework, we determined the residential yard- and local landscape-level features associated with the presence of three tick species of current and growing public health importance in residential yards across Staten Island, a borough of New York City, in the state of New York, USA. Results The amount and configuration of canopy cover immediately surrounding residential yards was found to strongly predict the presence of Ixodes scapularis and Amblyomma americanum , but not that of Haemaphysalis longicornis . Within yards, we found a protective effect of fencing against I. scapularis and A. americanum, but not against H. longicornis . For all species, the presence of log and brush piles strongly increased the odds of finding ticks in yards. Conclusions The results highlight a considerable risk of tick exposure in residential yards in Staten Island and identify both yard- and landscape-level features associated with their distribution. In particular, the significance of log and brush piles for all three species supports recommendations for yard management as a means of reducing contact with ticks. Graphical Abstract 
    more » « less
  5. Reisen, William (Ed.)
    Abstract The incidence of tick-borne diseases has increased in recent decades and accounts for the majority of vector-borne disease cases in temperate areas of Europe, North America, and Asia. This emergence has been attributed to multiple and interactive drivers including changes in climate, land use, abundance of key hosts, and people’s behaviors affecting the probability of human exposure to infected ticks. In this forum paper, we focus on how land use changes have shaped the eco-epidemiology of Ixodes scapularis-borne pathogens, in particular the Lyme disease spirochete Borrelia burgdorferi sensu stricto in the eastern United States. We use this as a model system, addressing other tick-borne disease systems as needed to illustrate patterns or processes. We first examine how land use interacts with abiotic conditions (microclimate) and biotic factors (e.g., host community composition) to influence the enzootic hazard, measured as the density of host-seeking I. scapularis nymphs infected with B. burgdorferi s.s. We then review the evidence of how specific landscape configuration, in particular forest fragmentation, influences the enzootic hazard and disease risk across spatial scales and urbanization levels. We emphasize the need for a dynamic understanding of landscapes based on tick and pathogen host movement and habitat use in relation to human resource provisioning. We propose a coupled natural-human systems framework for tick-borne diseases that accounts for the multiple interactions, nonlinearities and feedbacks in the system and conclude with a call for standardization of methodology and terminology to help integrate studies conducted at multiple scales. 
    more » « less