skip to main content


Search for: All records

Award ID contains: 1924241

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Innovation in biomedical science is always a field of interest for researchers. Drug delivery, being one of the key areas of biomedical science, has gained considerable significance. The utilization of simple yet effective techniques such as electrospinning has undergone significant development in the field of drug delivery. Various polymers such as PEG (polyethylene glycol), PLGA (Poly(lactic-co-glycolic acid)), PLA(Polylactic acid), and PCA (poly(methacrylate citric acid)) have been utilized to prepare electrospinning-based drug delivery systems (DDSs). Polyvinyl alcohol (PVA) has recently gained attention because of its biocompatibility, biodegradability, non-toxicity, and ideal mechanical properties as these are the key factors in developing DDSs. Moreover, it has shown promising results in developing DDSs individually and when combined with natural and synthetic polymers such as chitosan and polycaprolactone (PCL). Considering the outstanding properties of PVA, the aim of this review paper was therefore to summarize these recent advances by highlighting the potential of electrospun PVA for drug delivery systems.

     
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  2. Abstract: Surface acoustic wave (SAW) sensors with increasingly unique and refined designed patterns are often developed using the lithographic fabrication processes. Emerging applications of SAW sensors often require novel materials, which may present uncharted fabrication outcomes. The fidelity of the SAW sensor performance is often correlated with the ability to restrict the presence of defects in post-fabrication. Therefore, it is critical to have effective means to detect the presence of defects within the SAW sensor. However, labor-intensive manual labeling is often required due to the need for precision identification and classification of surface features for increased confidence in model accuracy. One approach to automating defect detection is to leverage effective machine learning techniques to analyze and quantify defects within the SAW sensor. In this paper, we propose a machine learning approach using a deep convolutional autoencoder to segment surface features semantically. The proposed deep image autoencoder takes a grayscale input image and generates a color image segmenting the defect region in red, metallic interdigital transducing (IDT) fingers in green, and the substrate region in blue. Experimental results demonstrate promising segmentation scores in locating the defects and regions of interest for a novel SAW sensor variant. The proposed method can automate the process of localizing and measuring post-fabrication defects at the pixel level that may be missed by error-prone visual inspection. 
    more » « less
    Free, publicly-accessible full text available July 19, 2024
  3. Tang, Qiang (Ed.)
    As an environmentally friendly technology, microbially induced calcite precipitation (MICP) is widely used to improve the engineering properties of soil. The goal of this study was to investigate the effect of rainfall-induced erosion on the stability of sandy slopes which were treated by MICP technology. The observation of the erosion pattern of low concentration (0.25 M Ca) and high concentration (0.5 M Ca) of MICP-treated slopes, the mechanical behaviors of MICP-treated and cement-treated samples, and the effects of rainfall-induced erosion on the roughness of 0.5 M Ca MICP-treated and 10% cement-treated slope were studied through visual observation, unconfined compressive tests, and roughness tests. For the 0.25 M Ca MICP-treated sample, surface erosion was found to occur soon after the start of the rainfall erosion test, while for the 0.5 M Ca MICP-treated sample, the slope surface remained intact after exposing to the rainfall for 24 hours. Through unconfined compressive tests, it can be concluded that the 0.5 M Ca MICP treatment achieved a high strength, which was similar to 10% cement-treated sand. The roughness test results showed that the surface of 0.5 M Ca MICP-treated slope looked smoother than the uneroded surface after 24-h rainfall-induced erosion. On the contrary, the surface of the 10% cement-treated slope became rougher after 24-h rainfall-induced erosion. These results indicated that the MICP-treated sandy slope had lower resistance against rainfall-induced erosion compared to the cement-treated sandy slope. 
    more » « less
  4. Polymeric microparticles have been shown to have great impacts in the area of drug delivery, biosensing, and tissue engineering. Electrospray technology, which provides a simple yet effective technique in the creation of microparticles, was utilized in this work. In addition, altering the electrospray experimental parameters such as applied voltage, flow rate, collector distance, solvents, and the polymer-solvent mixtures can result in differences in the size and morphology of the produced microparticles. The effects of the flow rate at (0.15, 0.3, 0.45, 0.6, 0.8, and 1 mL/h) and N, N-Dimethylformamide (DMF)/acetone solvent ratios (20:80, 40:60, 60:40, 80:20, 100:0 v/v) in the production of polyvinylidene fluoride (PVDF) microparticles were studied. Scanning electron microscopy (SEM) was used to observe changes in the morphology of the microparticles, and this revealed that a higher acetone to DMF ratio produces deformed particles, while flow rates at (0.3 and 0.45 mL/h) and a more optimized DMF to acetone solvent ratio (60:40 v/v) produced uniform spherical particles. We discovered from the Raman spectroscopy results that the electrosprayed PVDF microparticles had an increase in piezoelectric β phase compared to the PVDF pellet used in making the microparticles, which in its original form is α phase dominant and non-piezoelectric. 
    more » « less