skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1924431

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The Madagascar Basin is the primary pathway for Antarctic Bottom Water to ventilate the entire western Indian Ocean as part of the Global Overturning Circulation. The only way for this water mass to reach this basin is by crossing the Southwest Indian Ridge through its deep fracture zones. However, due to the scarcity of observations, the Antarctic Bottom Water presence has only been well‐established in the Atlantis II fracture zone. In May 2023, the Deep Madagascar Basin Experiment deployed three Deep SOLO Argo floats in the exit of the fracture zones that were more likely to transport Antarctic Bottom Water: Atlantis II, Novara, and Melville. These floats have been collecting temperature and salinity profiles every 3–5 days with high vertical resolution in the deep ocean. In the present paper, we use the first 7 months of float data to characterize the Antarctic Bottom Water in the deep fracture zone area, revisiting a half‐century puzzle about the Melville contribution. We also collected shipboard‐based profiles to calibrate float salinity and show it is within the Deep Argo program target accuracy. We find Antarctic Bottom Water in both Melville and Novara fracture zones, not only in Atlantis II. This is the first time the Novara contribution has been revealed. The floats also uncover their distinct properties, which may result from the different mixing histories. 
    more » « less
  2. The Southern Ocean overturning circulation is driven by winds, heat fluxes, and freshwater sources. Among these sources of freshwater, Antarctic sea-ice formation and melting play the dominant role. Even though ice-shelf melt is relatively small in magnitude, it is located close to regions of convection, where it may influence dense water formation. Here, we explore the impacts of ice-shelf melting on Southern Ocean water mass transformation (WMT) using simulations from the Energy Exascale Earth System Model (E3SM) both with and without the explicit representation of melt fluxes from beneath Antarctic ice shelves. We find that ice-shelf melting enhances transformation of Upper Circumpolar Deep Water (UCDW), converting it to lower density values. While the overall differences in Southern Ocean WMT between the two simulations are moderate, freshwater fluxes produced by ice-shelf melting have a further, indirect impact on the Southern Ocean overturning circulation through their interaction with sea-ice formation and melting, which also cause considerable upwelling. We further find that surface freshening and cooling by ice-shelf melting causes increased Antarctic sea-ice production and stronger density stratification near the Antarctic coast. In addition, ice-shelf melting causes decreasing air temperature, which may be directly related to sea-ice expansion. The increased stratification reduces vertical heat transport from the deeper ocean. Although the addition of ice-shelf melting processes leads to no significant changes in Southern Ocean WMT, the simulations and analysis conducted here point to a relationship between increased Antarctic ice-shelf melting and the increased role of sea ice in Southern Ocean overturning. 
    more » « less