skip to main content

Search for: All records

Award ID contains: 1924538

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    During the last ice age, the western United States was covered by large lakes, sustained partly by higher levels of precipitation. Increased rainfall was driven by the atmospheric circulation associated with the presence of large North American ice sheets, yet Pleistocene lakes generally reached their highstands not at glacial maximum but during deglaciation. Prior modeling studies, however, showed nearly monotonic drying since the last glacial maximum. Here I show that iTraCE, a new transient climate simulation of the last deglaciation, reproduces a robust peak in winter rainfall over the Great Basin near 16 ka. The simulated peak is driven by a transient strengthening and southward shift of the midlatitude jet. While meltwater forcing is an important driver of changes to the North Pacific Jet, changing orbital conditions and rising atmospheric CO2also shift the jet south and contribute to wetter conditions over the western US during deglaciation.

    more » « less
  2. Abstract

    Over its multibillion‐year history, the Earth has experienced a wide range of climates. The long‐term climate is controlled by the atmospheric carbon dioxide concentration, which is regulated by marine sequestration through chemical weathering. This chemical weathering sink is strongly linked to the distribution and composition of the continents. However, the effect of continental distribution has never been studied within a general framework. Here we show that the global weathering rate is sensitive to the size and shape of the continents, but is not well explained by the amount of land in the tropics. We construct synthetic continental configurations and use an ensemble of global climate model simulations to isolate the expected effect of continental arrangement on weathering and carbon burial. Runoff patterns are complex, sensitive to detailed features of continental geometry, and poorly predicted by continental latitude. These results help explain the long‐term variability and irregularity of Earth's climate.

    more » « less
  3. Abstract

    The early‐to mid‐Pliocene (5.3–3 Ma), characterized by warmer temperatures and similar CO2concentrations to present day, is considered a useful analog for future warming scenarios. Geological evidence suggests that during the Pliocene, many modern‐day desert regions received higher levels of rainfall and supported large perennial lakes and wetter vegetation types. These wetter conditions have been difficult to reconcile with model predictions of 21st century drying over most subtropical land regions. Using an atmospheric General Circulation Model, we show that underestimates of Pliocene rainfall over certain areas in models may be related to insufficient sea surface temperature (SST) warmth simulated over relatively local eastern boundary current regions. When SSTs off the coast of California are raised to more closely match some proxy reconstructions, rainfall increases over much of adjacent western North America. Over the southwestern USA, this increased rainfall is mainly due to a convergent monsoonal circulation that develops over late boreal summer. A smaller wintertime increase in precipitation also occurs due to differences in rainfall associated with midlatitude cyclones. Wetter land conditions are expected to weaken upwelling‐favorable coastal winds, so that increased rainfall caused by coastal SST warming suggests a positive feedback that could help sustain wet, Pliocene‐like conditions.

    more » « less
  4. Abstract

    Current global warming scenarios suggest surface temperatures may attain warmth last seen during periods of the early‐to mid‐Pliocene (5.3–3 Ma). Pliocene proxy reconstructions suggest sea surface temperatures 3–9°C warmer than today along midlatitude coastal upwelling sites. Recent climate modeling efforts focused on the mid‐Piacenzian period showed a good model‐data fit over midlatitude upwelling regions, but did not attempt to reproduce proxy records of early‐Pliocene warmth. Evidence also suggests that subtropical continents were wetter then; we show that warm coastal SSTs can be explained via such wetter land conditions near the upwelling sites. Using a global atmospheric model, we show that introducing idealized wetter conditions over subtropical continents leads to reductions in upwelling‐favorable wind events by weakening the land‐sea surface pressure gradient. The resulting weaker coastal upwelling of cold deep water can help explain the inferred warm coastal temperatures.

    more » « less
  5. Abstract

    Understanding how internal atmospheric variability affects Greenland ice sheet (GrIS) summertime melting would improve understanding of future sea level rise. We analyze the Community Earth System Model Large Ensemble (CESM‐LE) over 1951–2000 and 2051–2100. We find that internal variability dominates the forced response on short timescales (~20 years) and that the area impacted by internal variability grows in the future, connecting internal variability and climate change. Unlike prior studies, we do not assume specific patterns of internal variability to affect GrIS melting but derive them from maximum covariance analysis. We find that the North Atlantic Oscillation (NAO) is the major source of internal atmospheric variability associated with GrIS melt conditions in CESM‐LE and reanalysis, with the positive phase (NAO+) linked to widespread cooling over the ice sheet. CESM‐LE and CMIP5 project an increase in the frequency of NAO+ events, suggesting a negative feedback to the GrIS under future climate change.

    more » « less
  6. Abstract Stratocumulus clouds cover about a fifth of Earth’s surface, and due to their albedo and low-latitude location, they have a strong effect on Earth’s radiation budget. Previous studies using large-eddy simulations have shown that multiple equilibria (both stratocumulus-covered and cloud-free/scattered cumulus states) exist as a function of fixed SST, with relevance to equatorward advected air masses. Multiple equilibria have also been found as a function of atmospheric CO 2 , with a subtropical SST nearly 10 K higher in the cloud-free state and with suggested relevance to warm climate dynamics. In this study, we use a mixed-layer model with an added surface energy balance and the ability to simulate both the stratocumulus (coupled) and cloud-free/scattered cumulus (decoupled) states using a “stacked” mixed-layer approach to study both types of multiple equilibria and the corresponding hysteresis. The model’s simplicity and computational efficiency allow us to qualitatively explore the mechanisms critical to the stratocumulus cloud instability and hysteresis as well as isolate key processes that allow for multiple equilibria via mechanism-denial experiments not possible with a full-complexity model. For the hysteresis in fixed SST, we find that decoupling can occur due to either enhanced entrainment warming or a reduction in cloud-top longwave cooling. The critical SST at which decoupling occurs is highly sensitive to precipitation and entrainment parameterizations. In the CO 2 hysteresis, decoupling occurs in the simple model used even without the inclusion of SST–cloud cover feedbacks, and the width of the hysteresis displays the same sensitivities as the fixed SST case. Overall, the simple model analysis and results motivate further studies using higher complexity models. 
    more » « less
  7. Abstract The middepth ocean temperature profile was found by Munk in 1966 to agree with an exponential profile and shown to be consistent with a vertical advective–diffusive balance. However, tracer release experiments show that vertical diffusivity in the middepth ocean is an order of magnitude too small to explain the observed 1-km exponential scale. Alternative mechanisms suggested that nearly all middepth water upwells adiabatically in the Southern Ocean (SO). In this picture, SO eddies and wind set SO isopycnal slopes and therefore determine a nonvanishing middepth interior stratification even in the adiabatic limit. The effect of SO eddies on SO isopycnal slopes can be understood via either a marginal criticality condition or a near-vanishing SO residual deep overturning condition in the adiabatic limit. We examine the interplay between SO dynamics and interior mixing in setting the exponential profiles of σ 2 and ∂ z σ 2 . We use eddy-permitting numerical simulations, in which we artificially change the diapycnal mixing only away from the SO. We find that SO isopycnal slopes change in response to changes in the interior diapycnal mixing even when the wind forcing is constant, consistent with previous studies (that did not address these near-exponential profiles). However, in the limit of small interior mixing, the interior ∂ z σ 2 profile is not exponential, suggesting that SO processes alone, in an adiabatic limit, do not lead to the observed near-exponential structures of such profiles. The results suggest that while SO wind and eddies contribute to the nonvanishing middepth interior stratification, the exponential shape of the ∂ z σ 2 profiles must also involve interior diapycnal mixing. 
    more » « less
  8. Abstract Westerly wind bursts (WWBs) are anomalous surface wind gusts that play an important role in ENSO dynamics. Previous studies have identified several mechanisms that may be involved in the dynamics of WWBs. In particular, many have examined the importance of atmospheric deep convection to WWBs, including convection due to tropical cyclones, equatorial waves, and the Madden Julian Oscillation. Still, the WWB mechanism is not yet fully understood. In this study, we investigate the location of atmospheric convection which leads to WWBs and the role of positive feedbacks involving surface evaporation. We find that disabling surface flux feedbacks a few days before a WWB peaks does not weaken the event, arguing against local surface flux feedbacks serving as a WWB growth mechanism on individual events. On the other hand, directly suppressing convection by inhibiting latent heat release or eliminating surface evaporation rapidly weakens a WWB. By selectively suppressing convection near or further away from the equator, we find that convection related to off-equatorial cyclonic vortices is most important to equatorial WWB winds, while on-equator convection is unimportant. Despite strong resemblance of WWB wind patterns to the Gill response to equatorial heating, our findings indicate that equatorial convection is not necessary for WWBs to develop. Our conclusions are consistent with the idea that tropical cyclones, generally occurring more than 5° away from the equator, may be responsible for the majority of WWBs. 
    more » « less