skip to main content


Search for: All records

Award ID contains: 1924570

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The enormous population sizes and wide biogeographical distribution of many microbial eukaryotes set the expectation of high levels of intraspecific genetic variation. However, studies investigating protist populations remain scarce, mostly due to limited ‘omics data. Instead, most genetics studies of microeukaryotes have thus far relied on single loci, which can be misleading and do not easily allow for detection of recombination, a hallmark of sexual reproduction. Here, we analyze >40 genes from 72 single-cell transcriptomes from two morphospecies—Hyalosphenia papilio and Hyalosphenia elegans—of testate amoebae (Arcellinida, Amoebozoa) to assess genetic diversity in samples collected over four years from New England bogs. We confirm the existence of cryptic species based on our multilocus dataset, which provides evidence of recombination within and high levels of divergence between the cryptic species. At the same time, total levels of genetic diversity within cryptic species are low, suggesting that these abundant organisms have small effective population sizes, perhaps due to extinction and repopulation events coupled with efficient modes of dispersal. This study is one of the first to investigate population genetics in uncultivable heterotrophic protists using transcriptomics data and contributes towards understanding cryptic species of nonmodel microeukaryotes.

     
    more » « less
  2. Abstract

    The purpose of this study is to determine which taxonomic methods can elucidate clear and quantifiable differences between two cryptic ciliate species, and to test the utility of genome architecture as a new diagnostic character in the discrimination of otherwise indistinguishable taxa. Two cryptic tintinnid ciliates,Schmidingerella arcuataandSchmidingerella meunieri, are compared via traditional taxonomic characters including lorica morphometrics, ribosomal RNA (rRNA) gene barcodes and ecophysiological traits. In addition, single‐cell ‘omics analyses (single‐cell transcriptomics and genomics) are used to elucidate and compare patterns of micronuclear genome architecture between the congeners. The results include a highly similar lorica that is larger inS. meunieri, a 0%–0.5% difference in rRNA gene barcodes, two different and nine indistinguishable growth responses among 11 prey treatments, and distinct patterns of micronuclear genomic architecture for genes detected in both ciliates. Together, these results indicate that while minor differences exist betweenS. arcuataandS. meunieriin common indices of taxonomic identification (i.e., lorica morphology, DNA barcode sequences and ecophysiology), differences exist in their genomic architecture, which suggests potential genetic incompatibility. Different patterns of micronuclear architecture in genes shared by both isolates also enable the design of species‐specific primers, which are used in this study as unique “architectural barcodes” to demonstrate the co‐occurrence of both ciliates in samples collected from a NW Atlantic estuary. These results support the utility of genomic architecture as a tool in species delineation, especially in ciliates that are cryptic or otherwise difficult to differentiate using traditional methods of identification.

     
    more » « less
  3. Abstract

    Mobile genetic elements (MGEs) are transient genetic material that can move either within a single organism's genome or between individuals or species. While historically considered “junk” DNA (i.e., deleterious or at best neutral), more recent studies reveal the potential adaptive advantages MGEs provide in lineages across the tree of life. Ciliates, a group of single‐celled microbial eukaryotes characterized by nuclear dimorphism, exemplify how epigenetic influences from MGEs shape genome architecture and patterns of molecular evolution. Ciliate nuclear dimorphism may have evolved as a response to transposon invasion and ciliates have since co‐opted transposons to carry out programmed DNA deletion. Another example of the effect of MGEs is in providing mechanisms for lateral gene transfer (LGT) from bacteria, which introduces genetic diversity and, in several cases, may drive ecological specialization in ciliates. As a third example, the integration of viral DNA, likely through transduction, provides new genetic materials and can change the way host cells defend themselves against other viral pathogens. We argue that the acquisition of MGEs through non‐Mendelian patterns of inheritance, coupled with their effects on ciliate genome architecture and persistence throughout evolutionary history, exemplify how the transmission of mobile elements should be considered a mechanism of transgenerational epigenetic inheritance.

     
    more » « less
  4. Though historically understudied, due in large part to most species being uncultivable, microbial eukaryotes (i.e. protists) are abundant and widespread across diverse habitats. Recent advances in molecular techniques, including metabarcoding, allow for the characterization of poorly known protist lineages. This study surveys the diversity of SAR (Stramenopila, Alveolata, and Rhizaria), a major eukaryotic clade that is estimated to represent about half of all eukaryotic diversity. SAR lineages use varied metabolic strategies like mixotrophy in dinoflagellates (Alveolata), parasitism in apicomplexans (Alveolata) and labyrinthulids (Stramenopila), and life cycle stages that include encystment and attachment (e.g. in ciliates, Alveolata) to survive in highly dynamic habitats. Using metabarcoding primers designed specifically to target a portion of the 18S small subunit ribosomal RNA (SSU-rRNA) gene of SAR lineages, we compare protist community composition from tide pools in Acadia National Park, Maine, USA. We characterize over 500 lineages, here operational taxonomic units (OTUs), many of which are found abundant in the tide pool environment. We also find that communities vary by month sampled and exhibit patterns by size (i.e. macro-, micro-, and nano-sized). Taken together, these data allow us to further catalog protist diversity in extreme environments (e.g. those subject to extreme fluctuations in temperature and salinity during tidal cycles). Such data are critical in the explorations of biodiversity patterns among microorganisms on our rapidly changing planet.

     
    more » « less
    Free, publicly-accessible full text available October 12, 2024
  5. Phadke, Sujal (Ed.)
    Abstract Advances in phylogenomics and high-throughput sequencing have allowed the reconstruction of deep phylogenetic relationships in the evolution of eukaryotes. Yet, the root of the eukaryotic tree of life remains elusive. The most popular hypothesis in textbooks and reviews is a root between Unikonta (Opisthokonta + Amoebozoa) and Bikonta (all other eukaryotes), which emerged from analyses of a single-gene fusion. Subsequent, highly cited studies based on concatenation of genes supported this hypothesis with some variations or proposed a root within Excavata. However, concatenation of genes does not consider phylogenetically-informative events like gene duplications and losses. A recent study using gene tree parsimony (GTP) suggested the root lies between Opisthokonta and all other eukaryotes, but only including 59 taxa and 20 genes. Here we use GTP with a duplication-loss model in a gene-rich and taxon-rich dataset (i.e., 2,786 gene families from two sets of 155 and 158 diverse eukaryotic lineages) to assess the root, and we iterate each analysis 100 times to quantify tree space uncertainty. We also contrasted our results and discarded alternative hypotheses from the literature using GTP and the likelihood-based method SpeciesRax. Our estimates suggest a root between Fungi or Opisthokonta and all other eukaryotes; but based on further analysis of genome size, we propose that the root between Opisthokonta and all other eukaryotes is the most likely. 
    more » « less
  6. Orive, Maria (Ed.)
    Abstract Through analyses of diverse microeukaryotes, we have previously argued that eukaryotic genomes are dynamic systems that rely on epigenetic mechanisms to distinguish germline (i.e., DNA to be inherited) from soma (i.e., DNA that undergoes polyploidization, genome rearrangement, etc.), even in the context of a single nucleus. Here, we extend these arguments by including two well-documented observations: (1) eukaryotic genomes interact frequently with mobile genetic elements (MGEs) like viruses and transposable elements (TEs), creating genetic conflict, and (2) epigenetic mechanisms regulate MGEs. Synthesis of these ideas leads to the hypothesis that genetic conflict with MGEs contributed to the evolution of a dynamic eukaryotic genome in the last eukaryotic common ancestor (LECA), and may have contributed to eukaryogenesis (i.e., may have been a driver in the evolution of FECA, the first eukaryotic common ancestor). Sex (i.e., meiosis) may have evolved within the context of the development of germline–soma distinctions in LECA, as this process resets the germline genome by regulating/eliminating somatic (i.e., polyploid, rearranged) genetic material. Our synthesis of these ideas expands on hypotheses of the origin of eukaryotes by integrating the roles of MGEs and epigenetics. 
    more » « less
  7. Archibald, John (Ed.)
    Abstract Epigenetic processes in eukaryotes play important roles through regulation of gene expression, chromatin structure, and genome rearrangements. The roles of chromatin modification (e.g., DNA methylation and histone modification) and non-protein-coding RNAs have been well studied in animals and plants. With the exception of a few model organisms (e.g., Saccharomyces and Plasmodium), much less is known about epigenetic toolkits across the remainder of the eukaryotic tree of life. Even with limited data, previous work suggested the existence of an ancient epigenetic toolkit in the last eukaryotic common ancestor. We use PhyloToL, our taxon-rich phylogenomic pipeline, to detect homologs of epigenetic genes and evaluate their macroevolutionary patterns among eukaryotes. In addition to data from GenBank, we increase taxon sampling from understudied clades of SAR (Stramenopila, Alveolata, and Rhizaria) and Amoebozoa by adding new single-cell transcriptomes from ciliates, foraminifera, and testate amoebae. We focus on 118 gene families, 94 involved in chromatin modification and 24 involved in non-protein-coding RNA processes based on the epigenetics literature. Our results indicate 1) the presence of a large number of epigenetic gene families in the last eukaryotic common ancestor; 2) differential conservation among major eukaryotic clades, with a notable paucity of genes within Excavata; and 3) punctate distribution of epigenetic gene families between species consistent with rapid evolution leading to gene loss. Together these data demonstrate the power of taxon-rich phylogenomic studies for illuminating evolutionary patterns at scales of >1 billion years of evolution and suggest that macroevolutionary phenomena, such as genome conflict, have shaped the evolution of the eukaryotic epigenetic toolkit. 
    more » « less