skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 11 until 2:00 AM ET on Saturday, July 12 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 1925417

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Existing global volcanic radiative aerosol forcing estimates portray the period 700 to 1000 as volcanically quiescent, void of major volcanic eruptions. However, this disagrees with proximal Icelandic geological records and regional Greenland ice-core records of sulfate. Here, we use cryptotephra analyses, high-resolution sulfur isotope analyses, and glaciochemical volcanic tracers on an array of Greenland ice cores to characterise volcanic activity and climatically important sulfuric aerosols across the period 700 to 1000. We identify a prolonged episode of volcanic sulfur dioxide emissions (751–940) dominated by Icelandic volcanism, that we term the Icelandic Active Period. This period commences with the Hrafnkatla episode (751–763), which coincided with strong winter cooling anomalies across Europe. This study reveals an important contribution of prolonged volcanic sulfate emissions to the pre-industrial atmospheric aerosol burden, currently not considered in existing forcing estimates, and highlights the need for further research to disentangle their associated climate feedbacks. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Abstract The Eldgjá eruption is the largest basalt lava flood of the Common Era. It has been linked to a major ice‐core sulfur (S) spike in 939–940 CE and Northern Hemisphere summer cooling in 940 CE. Despite its magnitude and potential climate impacts, uncertainties remain concerning the eruption timeline, atmospheric dispersal of emitted volatiles, and coincident volcanism in Iceland and elsewhere. Here, we present a comprehensive analysis of Greenland ice‐cores from 936 to 943 CE, revealing a complex volatile record and cryptotephra with numerous geochemical populations. Transitional alkali basalt tephra matching Eldgjá are found in 939–940 CE, while tholeiitic basalt shards present in 936/937 CE and 940/941 CE are compatible with contemporaneous Icelandic eruptions from Grímsvötn and Bárðarbunga‐Veiðivötn systems (including V‐Sv tephra). We also find four silicic tephra populations, one of which we link to the Jala Pumice of Ceboruco (Mexico) at 941 ± 1 CE. Triple S isotopes, Δ33S, spanning 936–940 CE are indicative of upper tropospheric/lower stratospheric transport of aerosol sourced from the Icelandic fissure eruptions. However, anomalous Δ33S (down to −0.4‰) in 940–941 CE evidence stratospheric aerosol transport consistent with summer surface cooling revealed by tree‐ring reconstructions. Tephra associated with the anomalous Δ33S have a variety of compositions, complicating the attribution of climate cooling to Eldgjá alone. Nevertheless, our study confirms a major S emission from Eldgjá in 939–940 CE and implicates Eldgjá and a cluster of eruptions as triggers of summer cooling, severe winters, and privations in ∼940 CE. 
    more » « less
    Free, publicly-accessible full text available August 28, 2025
  3. Abstract Rapid warming and human exploitation threaten boreal forests. Understanding links among vegetation, climate, and people in this vast biome requires highly resolved long‐term records that integrate regional inputs. We developed an 850‐year pollen‐based record of supraregional vegetation change using a southern Greenland ice core and atmospheric modeling that identified the boreal and mixed‐conifer forests of eastern Canada as the dominant pollen source regions. Conifer pollen increased ∼1400 CE at the onset of the cooler and drier Little Ice Age. A subsequent decline began ∼1650 CE and a statistically significant pollen change after 1760 CE suggests ecological consequences of the Little Ice Age cooling and initial human exploitation that persisted until recent decades. These supraregional changes are broadly consistent with local records and demonstrate intensification of human impacts on northern forests, suggesting a shift from a climate‐modulated to an increasingly human‐controlled system during recent centuries. 
    more » « less
  4. Ancient texts and archaeological evidence indicate substantial lead exposure during antiquity that potentially impacted human health. Although lead exposure routes were many and included the use of glazed tablewares, paints, cosmetics, and even intentional ingestion, the most significant for the nonelite, rural majority of the population may have been through background air pollution from mining and smelting of silver and lead ores that underpinned the Roman economy. Here, we determined potential health effects of this air pollution using Arctic ice core measurements of Roman-era lead pollution, atmospheric modeling, and modern epidemiology-based relationships between air concentrations, blood lead levels (BLLs), and cognitive decline. Findings suggest air lead concentrations exceeded 150 ng/m3near metallurgical emission sources, with average enhancements of >1.0 ng/m3over Europe during the Pax Romana apogee of the Roman Empire. The result was blood lead enhancements in young children of about 2.4 µg/dl above an estimated Neolithic background of 1.0 µg/dl, leading to widespread cognitive decline including a 2.5-to-3 point reduction in intelligence quotient throughout the Roman Empire. 
    more » « less
    Free, publicly-accessible full text available January 21, 2026
  5. Polar ice cores and historical records evidence a large-magnitude volcanic eruption in 1831 CE. This event was estimated to have injected ~13 Tg of sulfur (S) into the stratosphere which produced various atmospheric optical phenomena and led to Northern Hemisphere climate cooling of ~1 °C. The source of this volcanic event remains enigmatic, though one hypothesis has linked it to a modest phreatomagmatic eruption of Ferdinandea in the Strait of Sicily, which may have emitted additional S through magma–crust interactions with evaporite rocks. Here, we undertake a high-resolution multiproxy geochemical analysis of ice-core archives spanning the 1831 CE volcanic event. S isotopes confirm a major Northern Hemisphere stratospheric eruption but, importantly, rule out significant contributions from external evaporite S. In multiple ice cores, we identify cryptotephra layers of low K andesite-dacite glass shards occurring in summer 1831 CE and immediately prior to the stratospheric S fallout. This tephra matches the chemistry of the youngest Plinian eruption of Zavaritskii, a remote nested caldera on Simushir Island (Kurils). Radiocarbon ages confirm a recent (<300 y) eruption of Zavaritskii, and erupted volume estimates are consistent with a magnitude 5 to 6 event. The reconstructed radiative forcing of Zavaritskii (−2 ± 1 W m−2) is comparable to the 1991 CE Pinatubo eruption and can readily account for the climate cooling in 1831–1833 CE. These data provide compelling evidence that Zavaritskii was the source of the 1831 CE mystery eruption and solve a confounding case of multiple closely spaced observed and unobserved volcanic eruptions. 
    more » « less
    Free, publicly-accessible full text available January 7, 2026
  6. Free, publicly-accessible full text available December 1, 2025
  7. The original goal of the proposed research was to develop accurately dated, high-resolution, ice-core records of a broad range of elements and chemical species to expand and extend recently identified, causal linkages between (1) ancient societies; (2) volcanism and hydroclimate; and (3) wars, plagues, social unrest, and economic activity--while engaging ancient and pre-modern historians, economists, and students in consilient ice core research and interpretation. Underpinning these efforts was the proposed collection and analysis of a ~440 meter (m) ice core (Tunu2020 but delayed by COVID until 2022) from the northeastern flank of the Greenland ice sheet that was to be used to develop accurately dated, sub-annually resolved, multi-parameter records during the past 4k years of volcanism, heavy-metal pollution from ancient mining and smelting activities, as well as other indicators of climate and human activities. Because core quality and the drill penetration rate decreased very dramatically below ~165 m, however, two cores were collected instead of a single longer core. The Tunu2022a and Tunu2022b cores were located 50 m apart and about 5 kilometer (km) from the Tunu2013 core site. 
    more » « less
  8. The overall objective of this research was to develop and interpret detailed records of Arctic lead pollution during the past ~8000 years to better understand the development, history, and impacts of mining and metallurgy from the late Neolithic period to present. The dataset contains high-resolution (30 millimeters [mm] average) measurements of elements, chemical species, and water isotopic ratios in the upper ~520 meters [m] of the archived REnland ice CAP (RECAP) ice core. Included are lead and other parameters such as the rare-earth-element cerium, non-sea-salt calcium, sulfur and sodium used for chronology development and interpretation of the lead record. The core was collected in 2015 from the Renland Ice Cap in east-central Greenland. No archive was available for the upper 99.6 m so the most recent part of the record corresponds to 116 years before 1950 (yb1950) or 1833 current era (CE). 
    more » « less