skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1925715

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Hasegawa, Yasuhisa (Ed.)
    Advancing robotic grasping and manipulation requires the ability to test algorithms and/or train learning models on large numbers of grasps. Towards the goal of more advanced grasping, we present the Grasp Reset Mechanism (GRM), a fully automated apparatus for conducting large-scale grasping trials. The GRM automates the process of resetting a grasping environment, repeatably placing an object in a fixed location and controllable 1-D orientation. It also collects data and swaps between multiple objects enabling robust dataset collection with no human intervention. We also present a standardized state machine interface for control, which allows for integration of most manipulators with minimal effort. In addition to the physical design and corresponding software, we include a dataset of 1,020 grasps. The grasps were created with a Kinova Gen3 robot arm and Robotiq 2F-85 Adaptive Gripper to enable training of learning models and to demonstrate the capabilities of the GRM. The dataset includes ranges of grasps conducted across four objects and a variety of orientations. Manipulator states, object pose, video, and grasp success data are provided for every trial. 
    more » « less
  2. Rotation manipulation tasks are a fundamental component of manipulation, however few benchmarks directly measure the limits of a hand's ability to rotate objects. This paper presents two benchmarks for quantitatively measuring the rotation manipulation capabilities of two-fingered hands. These benchmarks exists to augment the Asterisk Test to consider rotation manipulation ability. We propose two benchmarks: the first assesses a hand's limits to rotate objects clockwise and counterclockwise with minimal translation, and the second assesses how rotation manipulation impacts a hand's in-hand translation performance. We demonstrate the utility of these rotation benchmarks using three generic robot hand designs: 1) an asymmetrical two-linked versus one-linked gripper (2v1), 2) a symmetrical two-linked gripper (2v2), and 3) a symmetrical three-linked gripper (3v3). We conclude with a brief comparison between the hand designs and a observations about contact point selection for manipulation tasks, informed from our benchmark results. 
    more » « less