skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1925920

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract One hypothesized mechanism that triggers deep‐focus earthquakes in oceanic subducting slabs below ∼300 km depth is transformational faulting due to the olivine‐to‐spinel phase transition. This study uses finite element modeling to investigate phase transformation‐induced stress redistribution and material weakening in olivine. A thermodynamically consistent constitutive model is developed to capture the evolution of phase transformation in olivine under different pressure and temperature conditions. The overall numerical model enables considering multiscale material features, including the polycrystalline structure, mesoscale heterogeneity, and various phases or variants of phases at the microscopic level, and accounts for viscoplastic behaviors with thermo‐mechanical coupling effects. The model is validated with several benchmarks, including a phase diagram of phase transformation from olivine to spinel. The validated model is used to study the interactive behaviors between defects (heterogeneity) and phase transformation. The simulation results reveal that spinel formation under pressure initiates near inclusions and along the grain boundaries, consistent with experimental observations. At lower temperatures, the transformation leads to the formation of thin conjugate bands of spinel diagonal to the compression loading direction. Local stress analysis along these bands also suggests the initiation of faulting. In contrast, the numerical results at higher transformation rates show that significant spinel formation occurs over a larger area at elevated temperatures, leading to ductile behavior, which agrees with experimental findings. Numerical simulation of multiple inclusions under confined pressure also shows the formation of a network of spinel bands resembling phase‐transformation patterns observed in the laboratory experiments. Additionally, stress softening patterns due to phase transformation are similar to experimental observations. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  2. Abstract We investigate spatiotemporal changes of intermediate‐depth earthquakes in the double seismic zone beneath Central and Northeastern Japan before and after the 2011 magnitude 9 Tohoku earthquake. We build a template‐matching catalog 1 year before and 1 year after the Tohoku earthquake using Hi‐net recordings. The new catalog has a six‐fold increase in earthquakes compared to the Japan Meteorological Agency catalog. Our results show no significant change in the intermediate‐depth earthquake rate prior to the Tohoku earthquake, but a clear increase in both planes following the Tohoku earthquake. The regions with increased intermediate‐depth earthquake activity and the post‐seismic slips following the Tohoku earthquake are spatially separate and complementary with each other. Aftershock productivity of intermediate‐depth earthquakes increased in both planes following the Tohoku earthquake. Overall, aftershock productivity of the upper plane is higher than the lower plane, likely indicating that stress environments and physical mechanisms of intermediate‐depth earthquakes in the two planes are distinct. 
    more » « less
  3. Significance The exothermic metamorphic reaction in orthopyroxene (Opx), a major component of oceanic lithospheric mantle, is shown to trigger brittle failure in laboratory deformation experiments under conditions where garnet exsolution takes place. The reaction product is an extremely fine-grained material, forming narrow reaction zones that are mechanically weak, thereby facilitating macroscopic faulting. Oceanic subduction zones are characterized by two separate bands of seismicity, known as the double seismic zone. The upper band of seismicity, located in the oceanic crust, is well explained by dehydration-induced mechanical instability. Our newly discovered metamorphism-induced mechanical instability provides an alternative physical mechanism for earthquakes in the lower band of seismicity (located in the oceanic lithospheric mantle), with no requirement of hydration/dehydration processes. 
    more » « less