Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Studies of electrosensory systems have led to insights into a number of general issues in biology. However, investigations of these systems have been limited by the inability to precisely control spatial patterns of electrosensory input. In this paper, an electrode array and a system to selectively stimulate spatially restricted regions of an electroreceptor array are presented. The array has 96 channels consisting of chrome/gold electrodes patterned on a flexible parylene‐C substrate and encapsulated with another parylene‐C layer. The conformability of the electrode array allows for optimal current driving and surface interface conditions. Recordings of neural activity at the first central processing stage in weakly electric mormyrid fish support the potential of this system for high spatial resolution stimulation and mapping of electrosensory systems.more » « less
-
Abstract The cerebellum plays a crucial role in sensorimotor and associative learning. However, the contribution of molecular layer interneurons (MLIs) to these processes is not well understood. We used two-photon microscopy to study the role of ensembles of cerebellar MLIs in a go-no go task where mice obtain a sugar water reward if they lick a spout in the presence of the rewarded odorant and avoid a timeout when they refrain from licking for the unrewarded odorant. In naive animals the MLI responses did not differ between the odorants. With learning, the rewarded odorant elicited a large increase in MLI calcium responses, and the identity of the odorant could be decoded from the differential response. Importantly, MLIs switched odorant responses when the valence of the stimuli was reversed. Finally, mice took a longer time to refrain from licking in the presence of the unrewarded odorant and had difficulty becoming proficient when MLIs were inhibited by chemogenetic intervention. Our findings support a role for MLIs in learning valence in the cerebellum.more » « less
-
We demonstrate a novel electrowetting liquid combination using a room temperature ionic liquid (RTIL) and a nonpolar liquid, 1-phenyl-1-cyclohexene (PCH) suitable for focus-tunable 3-photon microscopy. We show that both liquids have over 90% transmission at 1300 nm over a 1.1 mm pathlength and an index of refraction contrast of 0.123. A lens using these liquids can be tuned from a contact angle of 133 to 48° with applied voltages of 0 and 60 V, respectively. Finally, a three-photon imaging system including an RTIL electrowetting lens was used to image a mouse brain slice. Axial scans taken with an electrowetting lens show excellent agreement with images acquired using a mechanically scanned objective.more » « less
-
We demonstrate a two-dimensional, individually tunable electrowetting microlens array fabricated using standard microfabrication techniques. Each lens in our array has a large range of focal tunability from −1.7 mm to −∞ in the diverging regime, which we verify experimentally from 0 to 75 V for a device coated in Parylene C. Additionally, each lens can be actuated to within 1% of their steady-state value within 1.5 ms. To justify the use of our device in a phase-sensitive optical system, we measure the wavefront of a beam passing through the center of a single lens in our device over the actuation range and show that these devices have a surface quality comparable to static microlens arrays. The large range of tunability, fast response time, and excellent surface quality of these devices open the door to potential applications in compact optical imaging systems, transmissive wavefront shaping, and beam steering.more » « less
-
Electrowetting-based adaptive optics are of great interest for applications ranging from confocal microscopy to LIDAR, but the impact of low-frequency mechanical vibration on these devices remains to be studied. We present a simple theoretical model for predicting the resonance modes induced on the liquid interface in conjunction with a numerical simulation. We experimentally confirm the resonance frequencies by contact angle modulation. They are found to be in excellent agreement with the roots of the zero-order Bessel functions of the first kind. Next, we experimentally verify that external axial vibration of an electrowetting lens filled with density mismatched liquids (Δρ = 250 kg/m3) will exhibit observable Bessel modes on the liquid–liquid interface. An electrowetting lens filled with density matched liquids (Δρ = 4 kg/m3) is robust to external axial vibration and is shown to be useful in mitigating the effect of vibrations in an optical system.more » « less
-
We demonstrate a method that permits wavefront aberration correction using an array of electrowetting prisms. A fixed high fill factor microlens array followed by a lower fill factor adaptive electrowetting prism array is used to correct wavefront aberration. The design and simulation of such aberration correction mechanism is described. Our results show significant improvement to the Strehl ratio by using our aberration correction scheme which results in diffraction limited performance. Compactness and effectiveness of our design can be implemented in many applications that require aberration correction, such as microscopy and consumer electronics.more » « less
-
In this work we present a two-dimensional micro-scale array of individually addressable, focal length tunable, electrowetting lenses fabricated using standard microfabrication techniques. The compact, transmissive nature of these arrays opens the possibility for integration into miniature optical systems involving wavefront shaping and beam steering.more » « less
An official website of the United States government
