skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1928166

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Topological domain walls separating 2+1 dimensional topologically ordered phases can be understood in terms of Witt equivalences between the UMTCs describing anyons in the bulk topological orders. However, this picture does not provide a framework for decomposing stacks of multiple domain walls into superselection sectors — i.e., into fundamental domain wall types that cannot be mixed by any local operators. Such a decomposition can be understood using an alternate framework in the case that the topological order is anomaly-free, in the sense that it can be realized by a commuting projector lattice model. By placing these Witt equivalences in the context of a 3-category of potentially anomalous (2+1)D topological orders, we develop a framework for computing the decomposition of parallel topological domain walls into indecomposable superselection sectors, extending the previous understanding to topological orders with non-trivial anomaly. We characterize the superselection sectors in terms of domain wall particle mobility, which we formalize in terms of tunnelling operators. The mathematical model for the 3-category of topological orders is the 3-category of fusion categories enriched over a fixed unitary modular tensor category. 
    more » « less