skip to main content


Search for: All records

Award ID contains: 1928882

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The title compound, [Al 4 (CH 3 ) 8 (C 2 H 7 N) 2 H 2 ], crystallizes as eight-membered rings with –(CH 3 ) 2 Al–(CH 3 ) 2 N–(CH 3 ) 2 Al– moieties connected by single hydride bridges. In the X-ray structure, the ring has a chair conformation, with the hydride H atoms being close to the plane through the four Al atoms. An optimized structure was also calculated by all-electron density functional theory (DFT) methods, which agrees with the X-ray structure but gives a somewhat different geometry for the hydride bridge. Charges on the individual atoms were determined by valence shell occupancy refinements using MoPro and also by DFT calculations analyzed by several different methods. All methods agree in assigning a positive charge to the Al atoms, negative charges to the C, N, and hydride H atoms, and small positive charges to the methyl H atoms. 
    more » « less
  2. Despite its simplicity, the composition of a material can be used as input to machine learning models to predict a range of materials properties. However, many property optimization tasks require the generation of novel but realistic materials compositions. In this study, we describe a way to generate compositions of hybrid organic–inorganic crystals through adapting Augmented CycleGAN, a novel generative model that can learn many-to-many relations between two domains. Specifically, we investigate the problem of composition change upon amine swap: for a specific chemical system (set of elements) crystalized with amine A, how would the product chemical compositions change if it is crystalized with amine B? By training with limited data from Cambridge Structural Database, our model can generate realistic chemical compositions for hybrid crystalline materials. The Augmented CycleGAN model can also utilize abundant unpaired data (compositions of different chemical systems), a feature that traditional supervised methods lack. The generated compositions can be used for many tasks, for example, as input fed to a classifier that predicts structural dimensionality. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)