skip to main content


Search for: All records

Award ID contains: 1928891

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We studied hybridization between the Black-crested and Tufted titmouse across two geographically distinct transects that differ in the timing of secondary contact by hundreds to thousands of years. We found that hybridization patterns correspond to localized hybrid swarms and that the titmouse hybrid zone is likely slowly expanding over time, a product of short post-natal dispersal distances coupled with weak or absent selection against admixture. We show the southern part of the hybrid zone located in Texas is four times wider than the northern region of hybridization in Oklahoma, which is likely due to geographic differences in hybrid zone age. Despite differences in width, most individuals in both transects are advanced-generation hybrids and backcrosses, suggesting geographically consistent hybridization dynamics. We documented a strong correlation between genotypes and plumage index, suggesting that hybridization has not yet resulted in the decoupling of plumage and genome-wide ancestry as observed in some other avian hybrid zones. Although our results suggest the ongoing expansion of the hybrid zone, the rate of expansion appears to be slow, on the scale of tens of meters a year, and it will likely take hundreds of thousands to millions of years before homogenization of the parental populations. While we did not find support for partial reproductive isolation in the hybrid zone itself, there is the possibility that ecological or sexual selection limits introgression into allopatric regions. Broadly, the results of our study highlight the value of multiple, geographically distant, transects across a hybrid zone for assessing the evolutionary dynamics of hybridizing lineages.

     
    more » « less
  2. Abstract

    Both abiotic and biotic drivers influence species distributions. Abiotic drivers such as climate have received considerable attention, even though biotic drivers such as hybridization often interact with abiotic drivers. We sought to explore the (1) costs of co‐occurrence for ecologically similar species that hybridize and (2) associations between ecological factors and condition to understand how abiotic and biotic factors influence species distributions. For two closely related and ecologically similar songbirds, black‐capped and mountain chickadees, we characterized body condition, as a proxy for fitness, using a 1358‐individual range‐wide dataset. We compared body condition in sympatry and allopatry with several abiotic and biotic factors using species‐specific generalized linear mixed models. We generated genomic data for a subset of 217 individuals to determine the extent of hybridization‐driven admixture in our dataset. Within this data subset, we found that ~11% of the chickadees had hybrid ancestry, and all hybrid individuals had typical black‐capped chickadee plumage. In the full dataset, we found that birds of both species, independent of demographic and abiotic factors, had significantly lower body condition when occurring in sympatry than birds in allopatry. This could be driven by either the inclusion of cryptic, likely poor condition, hybrids in our full dataset, competitive interactions in sympatry, or range edge effects. We are currently unable to discriminate between these mechanisms. Our findings have implications for mountain chickadees in particular, which will encounter more black‐capped chickadees as black‐capped chickadee ranges shift upslope and could lead to local declines in mountain chickadee populations.

     
    more » « less
  3. In hybrid zones, whether barrier loci experience selection mostly independently or as a unit depends on the ratio of selection to recombination as captured by the coupling coefficient. Theory predicts a sharper transition between an uncoupled and coupled system when more loci affect hybrid fitness. However, the extent of coupling in hybrid zones has rarely been quantified. Here, we use simulations to characterize the relationship between the coupling coefficient and variance in clines across genetic loci. We then re-analyze 25 hybrid zone data sets and find that cline variances and estimated coupling coefficients form a smooth continuum from high variance and weak coupling to low variance and strong coupling. Our results are consistent with low rates of hybridization and a strong genome-wide barrier to gene flow when the coupling coefficient is much greater than 1, but also suggest that this boundary might be approached gradually and at a near constant rate over time. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  4. Free, publicly-accessible full text available October 3, 2024
  5. Thermoregulatory performance can be modified through changes in various subordinate traits, but the rate and magnitude of change in these traits is poorly understood. We investigated flexibility in traits that affect thermal balance between black-capped chickadees (Poecile atricapillus) acclimated for 6 weeks to cold (−5°C) or control (23°C) environments (n=7 per treatment). We made repeated measurements of basal and summit metabolic rates via flow-through respirometry and of body composition using quantitative magnetic resonance of live birds. At the end of the acclimation period, we measured thermal conductance of the combined feathers and skins. Cold-acclimated birds had a higher summit metabolic rate, reflecting a greater capacity for endogenous heat generation, and an increased lean mass. However, birds did not alter their thermal conductance. These results suggest that chickadees respond to cold stress by increasing their capacity for heat production rather than increasing heat retention, an energetically expensive strategy.

     
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  6. Sethuraman, Arun (Ed.)
    Abstract Recently diverged taxa often exhibit heterogeneous landscapes of genomic differentiation, characterized by regions of elevated differentiation on an otherwise homogeneous background. While divergence peaks are generally interpreted as regions responsible for reproductive isolation, they can also arise due to background selection, selective sweeps unrelated to speciation, and variation in recombination and mutation rates. To investigate the association between patterns of recombination and landscapes of genomic differentiation during the early stages of speciation, we generated fine-scale recombination maps for six southern capuchino seedeaters (Sporophila) and two subspecies of White Wagtail (Motacilla alba), two recent avian radiations in which divergent selection on pigmentation genes has likely generated peaks of differentiation. We compared these recombination maps to those of Collared (Ficedula albicollis) and Pied Flycatchers (Ficedula hypoleuca), non-sister taxa characterized by moderate genomic divergence and a heterogenous landscape of genomic differentiation shaped in part by background selection. Although recombination landscapes were conserved within all three systems, we documented a weaker negative correlation between recombination rate and genomic differentiation in the recent radiations. All divergence peaks between capuchinos, wagtails, and flycatchers were located in regions with lower-than-average recombination rates, and most divergence peaks in capuchinos and flycatchers fell in regions of exceptionally reduced recombination. Thus, co-adapted allelic combinations in these regions may have been protected early in divergence, facilitating rapid diversification. Despite largely conserved recombination landscapes, divergence peaks are specific to each focal comparison in capuchinos, suggesting that regions of elevated differentiation have not been generated by variation in recombination rate alone. 
    more » « less