skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1928923

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Melt composition, temperature, and crystallinity are often seen as the three most important characteristics driving lava rheology, which controls eruptive behavior. Traditional methods of measuring the viscosity of crystallizing basalts often yield different mineral characteristics to natural samples and are typically bubble-free. To quantify the viscosity of basalts inclusive of bubble and crystal cargo, we developed a new technique to measure high-temperature three-phase isothermal lava viscosity and applied it to samples from the 2018 eruption of Kīlauea. This new experimental technique begins at subliquidus temperatures, preserving original phenocrysts. A short experimental duration allows for the retention of most of the original bubble population (19%–31% vs. 36% in the original lava) and accurate replication of crystal textures from field samples, as documented in quenched postexperiment samples. The observed rheological behavior in these experiments, conducted at syneruptive temperatures (1150–1105 °C) and strain rates (0.4–18 s–1), should therefore be representative of the lava flows. We measured average viscosities of 116 Pa·s at 1150 °C to 167 Pa·s at 1115 °C (i.e., only 10%–25% higher than calculated liquid viscosities at those temperatures) and a maximum of 1800 Pa·s at 1105 °C. These results are much lower than viscosity measured in traditional bubble-free experiments, which plateaued at ~14,000 Pa·s at 1115 °C. Our results suggest the effect of bubbles in three-phase magmas may be greater than predicted by models based on two-phase bubbly liquids, and this effect must be included in realistic lava flow rheology models. The method proposed here supplies a framework for providing the necessary experimental constraints. 
    more » « less
  2. Zellmer, Georg F (Ed.)
    Abstract Rocks produced by diverse processes, from condensation in space to impacts on planetary surfaces to volcanism, contain both crystals and amorphous material. Crystallinity provides information on the thermal history of the sample and is especially important in characterizing volcanic rocks and pyroclasts because lava rheology is profoundly influenced by the crystal content. Crystallinity is typically quantified via microscopy, using transmitted light or backscattered electrons. However, many samples present visibly ambiguous textures such as intimate intergrowth of crystal phases, and/or crystal sizes extending down to the nanometer scale. Here, we apply calorimetric methods involving heat capacity and enthalpy to assess the crystallinity of a series of volcanic samples. We tested three different approaches, using differential scanning calorimetry, on 30–40 mg aliquots of powdered basalts from the 2018 Kīlauea lower East Rift Zone. The first approach involves determining the magnitude of the increase in heat capacity at the glass transition, which can determine crystallinity to a 1σ precision of ±3%. The second approach is based on the enthalpy of fusion, which requires a longer more complex procedure with results that are typically more uncertain than for the heat capacity method, with a 1σ of ±6%. A final method utilizing differences in enthalpies calculated from the heat capacities required the most complex procedure and has the greatest uncertainty of ±18%. Preliminary results for lavas with microscopically determined crystallinities ranging from 11 to 98% indicate that crystallinity based on calorimetric data can be tens of percent higher than the average value identified using microscopy and petrographic analysis. Image-based methodologies applied to sections of samples reveal spatial heterogeneity and details in texture and crystallinity, whereas calorimetry-based methodologies capture the overall ‘bulk sample’ properties, unbiased by section effects or imaging resolution limits. These techniques are a powerful combination that can present complementary views of crystallinity. 
    more » « less
  3. Abstract We show that recalescence, or spontaneous reheating of a cooling material due to rapid release of latent heat, can occur during disequilibrium crystallization of depolymerized Mg-rich melts. This can only happen at fast cooling rates, where the melt becomes undercooled by tens to hundreds of degrees before crystallization begins. Using a forward-looking infrared (FLIR) camera, we documented recalescence in pyroxene (Fe, Mg)SiO3 and komatiite lavas that initially cooled at 25–50 °C s–1. Local heating at the crystallization front exceeds 150 °C for the pyroxene and 10 °C for komatiite and lasts for several seconds as the crystallization front migrates through. We determined the latent heat release by differential scanning calorimetry to be 440 J g–1 for pyroxene and 275 J g–1 for komatiite with a brief power output of ∼100 W g–1 or ∼300 MW m–3. Recalescence may be a widespread process in the solar system, particularly in lava fountains, and cooling histories of mafic pyroclasts should not be assumed a priori to be monotonic. 
    more » « less