skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1929134

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Fluid interfaces significantly influence the dynamics of protein solutions, effects that can be isolated by performing experiments in microgravity, greatly reducing the amount of solid boundaries present, allowing air-liquid interfaces to become dominant. This investigation examined the effects of protein concentration on interfacial shear-induced fibrillization of insulin in microgravity within a containerless biochemical reactor, the ring-sheared drop (RSD), aboard the international space station (ISS). Human insulin was used as a model amyloidogenic protein for studying protein kinetics with applications to in situ pharmaceutical production, tissue engineering, and diseases such as Alzheimer’s, Parkinson’s, infectious prions, and type 2 diabetes. Experiments investigated three main stages of amyloidogenesis: nucleation studied by seeding native solutions with fibril aggregates, fibrillization quantified using intrinsic fibrillization rate after fitting measured solution intensity to a sigmoidal function, and gelation observed by detection of solidification fronts. Results demonstrated that in surface-dominated amyloidogenic protein solutions: seeding with fibrils induces fibrillization of native protein, intrinsic fibrillization rate is independent of concentration, and that there is a minimum fibril concentration for gelation with gelation rate and rapidity of onset increasing monotonically with increasing protein concentration. These findings matched well with results of previous studies within ground-based analogs. 
    more » « less
  2. null (Ed.)
    Abstract Fluid bioreactors in microgravity environments may utilize alternative methods of containment and mixing. The ring-sheared drop (RSD) is a containerless mixing device which functions in microgravity using surface tension for containment and mixes through interfacially-driven flow. To assess the feasibility of using interfacially driven flow devices, such as the RSD, as bioreactors, Escherichia coli growth and recombinant protein expression were analyzed in a ground-based analog of the RSD called the knife edge surface viscometer (KEV). Results demonstrated that the KEV can facilitate the growth of E. coli and that growth rate increases logarithmically with increasing knife edge rotation rate, similar to the standard growth method on Earth (orbital shaker). Furthermore, the KEV was shown to be viable for supporting recombinant protein expression in E. coli at levels comparable to those achieved using standard growth methods. 
    more » « less