Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Moving target defence (MTD) has been gaining traction to thwart false data injection attacks against state estimation (SE) in the power grid. MTD actively perturbs the reactance of transmission lines equipped with distributed flexible AC transmission system (D‐FACTS) devices to falsify the attacker's knowledge about the system configuration. However, the existing literature has not systematically studied what influences the detection effectiveness of MTD and how it can be improved based on the topology analysis. These problems are tackled here from the perspective of an MTD plan in which the D‐FACTS placement is determined. We first exploit the relation between the rank of the composite matrix and the detecting effectiveness. Then, we rigorously derive upper and lower bounds on the attack detecting probability of MTDs with a given rank of the composite matrix. Furthermore, we analyse existing planning methods and highlight the importance of bus coverage by D‐FACTS devices. To improve the detection effectiveness, we propose a novel graph theory–based planning algorithm to retain the maximum rank of the composite matrix while covering all necessary buses. Comparative results on multiple systems show the high detecting effectiveness of the proposed algorithm in both DC‐ and AC‐SE.more » « less
-
Hidden moving target defense (HMTD) is a proactive defense strategy that is kept hidden from attackers by changing the reactance of transmission lines to thwart false data injection (FDI) attacks. However, alert attackers with strong capabilities pose additional risks to the HMTD and thus, it is much-needed to evaluate the hiddenness of the HMTD. This paper first summarizes two existing alert attacker models, i.e., bad-data-detection-based alert attackers and data-driven alert attackers. Furthermore, this paper proposes a novel model-based alert attacker model that uses the MTD operation models to estimate the dispatched line reactance. The proposed attacker model can use the estimated line reactance to construct stealthy FDI attacks against HMTD methods that lack randomness. We propose a novel random-enabled HMTD (RHMTD) operation method, which utilizes random weights to introduce randomness and uses the derived hiddenness operation conditions as constraints. RHMTD is theoretically proven to be kept hidden from three alert attacker models. In addition, we analyze the detection effectiveness of the RHMTD against three alert attacker models. Simulation results on the IEEE 14-bus systems show that traditional HMTD methods fail to detect attacks by the model-based alert attacker, and RHMTD is kept hidden from three alert attackers and is effective in detecting attacks by three alert attackers.more » « less
An official website of the United States government
