skip to main content


Search for: All records

Award ID contains: 1929355

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Cells employ multiple systems to maintain cellular integrity, including mechanosensitive ion channels and the cell wall integrity (CWI) pathway. Here, we use pollen as a model system to ask how these different mechanisms are interconnected at the cellular level. MscS-Like 8 (MSL8) is a mechanosensitive channel required to protect Arabidopsis thaliana pollen from osmotic challenges during in vitro rehydration, germination, and tube growth. New CRISPR/Cas9 and artificial miRNA-generated msl8 alleles produced unexpected pollen phenotypes, including the ability to germinate a tube after bursting, dramatic defects in cell wall structure, and disorganized callose deposition at the germination site. We document complex genetic interactions between MSL8 and two previously established components of the CWI pathway, MARIS and ANXUR1/2. Overexpression of MARISR240C-FP suppressed the bursting, germination, and callose deposition phenotypes of msl8 mutant pollen. Null msl8 alleles suppressed the internalized callose structures observed in MARISR240C-FP lines. Similarly, MSL8-YFP overexpression suppressed bursting in the anxur1/2 mutant background, while anxur1/2 alleles reduced the strong rings of callose around ungerminated pollen grains in MSL8-YFP overexpressors. These data show that mechanosensitive ion channels modulate callose deposition in pollen and provide evidence that cell wall and membrane surveillance systems coordinate in a complex manner to maintain cell integrity.

     
    more » « less
  2. Abstract Intrinsically disordered protein regions (IDRs) are highly dynamic sequences that rapidly sample a collection of conformations over time. In the past several decades, IDRs have emerged as a major component of many proteomes, comprising ~30% of all eukaryotic protein sequences. Proteins with IDRs function in a wide range of biological pathways and are notably enriched in signaling cascades that respond to environmental stresses. Here, we identify and characterize intrinsic disorder in the soluble cytoplasmic N‐terminal domains of MSL8, MSL9, and MSL10, three members of the MscS‐like (MSL) family of mechanosensitive ion channels. In plants, MSL channels are proposed to mediate cell and organelle osmotic homeostasis. Bioinformatic tools unanimously predicted that the cytosolic N‐termini of MSL channels are intrinsically disordered. We examined the N‐terminus of MSL10 (MSL10 N ) as an exemplar of these IDRs and circular dichroism spectroscopy confirms its disorder. MSL10 N adopted a predominately helical structure when exposed to the helix‐inducing compound trifluoroethanol (TFE). Furthermore, in the presence of molecular crowding agents, MSL10 N underwent structural changes and exhibited alterations to its homotypic interaction favorability. Lastly, interrogations of collective behavior via in vitro imaging of condensates indicated that MSL8 N , MSL9 N , and MSL10 N have sharply differing propensities for self‐assembly into condensates, both inherently and in response to salt, temperature, and molecular crowding. Taken together, these data establish the N‐termini of MSL channels as intrinsically disordered regions with distinct biophysical properties and the potential to respond uniquely to changes in their physiochemical environment. 
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  3. Abstract The ability to sense and respond to physical forces is critical for the proper function of cells, tissues, and organisms across the evolutionary tree. Plants sense gravity, osmotic conditions, pathogen invasion, wind, and the presence of barriers in the soil, and dynamically integrate internal and external stimuli during every stage of growth and development. While the field of plant mechanobiology is growing, much is still poorly understood—including the interplay between mechanical and biochemical information at the single-cell level. In this review, we provide an overview of the mechanical properties of three main components of the plant cell and the mechanoperceptive pathways that link them, with an emphasis on areas of complexity and interaction. We discuss the concept of mechanical homeostasis, or “mechanostasis,” and examine the ways in which cellular structures and pathways serve to maintain it. We argue that viewing mechanics and mechanotransduction as emergent properties of the plant cell can be a useful conceptual framework for synthesizing current knowledge and driving future research. 
    more » « less
  4. In animals, PIEZOs are plasma membrane–localized cation channels involved in diverse mechanosensory processes. We investigated PIEZO function in tip-growing cells in the mossPhyscomitrium patensand the flowering plantArabidopsis thaliana.PpPIEZO1 andPpPIEZO2 redundantly contribute to the normal growth, size, and cytoplasmic calcium oscillations of caulonemal cells. BothPpPIEZO1 andPpPIEZO2 localized to vacuolar membranes. Loss-of-function, gain-of-function, and overexpression mutants revealed that moss PIEZO homologs promote increased complexity of vacuolar membranes through tubulation, internalization, and/or fission.ArabidopsisPIEZO1 also localized to the tonoplast and is required for vacuole tubulation in the tips of pollen tubes. We propose that in plant cells the tonoplast has more freedom of movement than the plasma membrane, making it a more effective location for mechanosensory proteins.

     
    more » « less