skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1929566

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Malaspina Glacier, located on the coast of southern Alaska, is the world's largest piedmont glacier. A narrow ice‐cored foreland zone undergoing rapid thermokarst erosion separates the glacier from the relatively warm waters of the Gulf of Alaska. Glacier‐wide thinning rates for Malaspina are greater than 1 m/yr, and previous geophysical investigations indicated that bed elevation exceeds 300 m below sea level in some places. These observations together give rise to the question of glacial stability. To address this question, glacier evolution models are dependent upon detailed observations of Malaspina's subglacial topography. Here, we map 2,000 line‐km of the glacier's bed using airborne radar sounding data collected by NASA's Operation IceBridge. When compared to gridded radar measurements, we find that glaciological models overestimate Malaspina's volume by more than 30%. While we report a mean bed elevation 100 m greater than previous models, we find that Malaspina inhabits a broad basin largely grounded below sea level. Several subglacial channels dissect the glacier's bed: the most prominent of these channels extends at least 35 km up‐glacier from the terminus toward the throat of Seward Glacier. Provided continued foreland erosion, an ice‐ocean connection may promote rapid retreat along these overdeepened subglacial channels, with a global sea‐level rise potential of 1.4 mm. 
    more » « less
  2. The following dataset includes transient electromagnetic (TEM) data collected from the foreland region surrounding the front of the Malaspina Glacier, Alaska. This dataset was collected during the Summer of 2021 for the purpose of identifying regions within the forelands that contained buried stagnant glacial ice, and the thickness of the ice deposits. 
    more » « less