Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Anthropogenic pollution affects environments differently depending on proximity to pollution source, exposure route, and species ecology. Thus, understanding organism’s ecological role and exposure route to contaminants is central to assessing pollution impact. Treated municipal wastewater releases contaminants into waterways and alters microbial communities. Plants absorb contaminants and expose animals through foraging and nest-building activities. Nesting ecology differences of ground vs wood cavity-nesting bees offers insight into niche-specific susceptibility to pollution. Because contaminants bind to soil strongly, ground-nesting bees near wastewater are likely most impacted, while wood cavity-nesting bees likely less impacted since plants’ ability to uptake contaminants are species dependent. We compared gut microbiomes of directly exposed soil-nestingHalictus ligatusand indirectly exposed wood-nestingCeratinaspp. upstream/downstream of wastewater. We collected bees, flowers, and soil, and analyzed their bacteria microbiomes (16S rRNA). Wastewater altered ground-nestingH. ligatusmicrobiome >18 times greater than wood cavity-nestingCeratinaadults.Ceratinalarvae and pollen provisions showed significant but smaller shifts. Conversely, soil and flower microbiomes remained stable, indicating higher resilience. These results demonstrate that exposure routes drive contaminants susceptibility, with animal-associated microbes most vulnerable. Because bees are important pollinators and biodiversity contributors, these disruptions point to broader ecological risks in increasingly contaminated landscapes. Abstract Figuremore » « lessFree, publicly-accessible full text available September 15, 2026
-
ABSTRACT Microbial environmental transmission among individuals plays an important role in shaping the microbiomes of many species. Despite the importance of the microbiome for host fitness, empirical investigations on environmental transmission are scarce, particularly in systems where interactions across multiple trophic levels influence symbiotic dynamics. Here, we explore microbial transmission within insect microbiomes, focusing on solitary bees. Specifically, we investigate the environmental transmission hypothesis, which posits that solitary bees acquire and deposit their associated microbiota from and to their surroundings, especially flowers. Using experimental setups, we examine the transmission dynamics ofApilactobacillus micheneri, a fructophilic and acidophilic bacterium, between the solitary beeOsmia lignaria(Megachilidae) and the plantPhacelia tanacetifolia(Boraginaceae). Our results demonstrate that bees not only acquire bacteria from flowers but also deposit these microbes onto uninoculated flowers for other bees to acquire them, supporting a bidirectional microbial exchange. We therefore find empirical support for the environmental transmission hypothesis, and we discuss the multitrophic dependencies that facilitate microbial transmission between bees and flowers.more » « less
-
Abstract Host–microbe interactions underlie the development and fitness of many macroorganisms, including bees. Whereas many social bees benefit from vertically transmitted gut bacteria, current data suggests that solitary bees, which comprise the vast majority of species diversity within bees, lack a highly specialized gut microbiome. Here we examine the composition and abundance of bacteria and fungi throughout the complete life cycle of the ground-nesting solitary bee Anthophora bomboides standfordiana. In contrast to expectations, immature bee stages maintain a distinct core microbiome consisting of Actinobacterial genera (Streptomyces, Nocardiodes) and the fungus Moniliella spathulata. Dormant (diapausing) larval bees hosted the most abundant and distinctive bacteria and fungi, attaining 33 and 52 times their initial copy number, respectively. We tested two adaptive hypotheses regarding microbial functions for diapausing bees. First, using isolated bacteria and fungi, we found that Streptomyces from brood cells inhibited the growth of multiple pathogenic filamentous fungi, suggesting a role in pathogen protection during overwintering, when bees face high pathogen pressure. Second, sugar alcohol composition changed in tandem with major changes in fungal abundance, suggesting links with bee cold tolerance or overwintering biology. We find that A. bomboides hosts a conserved core microbiome that may provide key fitness advantages through larval development and diapause, which raises the question of how this microbiome is maintained and faithfully transmitted between generations. Our results suggest that focus on microbiomes of mature or active insect developmental stages may overlook stage-specific symbionts and microbial fitness contributions during host dormancy.more » « less
-
Abstract For most animals, the microbiome is key for nutrition and pathogen defence, and is often shaped by diet. Corbiculate bees, including honey bees, bumble bees, and stingless bees, share a core microbiome that has been shaped, at least in part, by the challenges associated with pollen digestion. However, three species of stingless bees deviate from the general rule of bees obtaining their protein exclusively from pollen (obligate pollinivores) and instead consume carrion as their sole protein source (obligate necrophages) or consume both pollen and carrion (facultative necrophages). These three life histories can provide missing insights into microbiome evolution associated with extreme dietary transitions. Here, we investigate, via shotgun metagenomics, the functionality of the microbiome across three bee diet types: obligate pollinivory, obligate necrophagy, and facultative necrophagy. We find distinct differences in microbiome composition and gene functional profiles between the diet types. Obligate necrophages and pollinivores have more specialized microbes, whereas facultative necrophages have a diversity of environmental microbes associated with several dietary niches. Our study suggests that necrophagous bee microbiomes may have evolved to overcome cellular stress and microbial competition associated with carrion. We hypothesize that the microbiome evolved social phenotypes, such as biofilms, that protect the bees from opportunistic pathogens present on carcasses, allowing them to overcome novel nutritional challenges. Whether specific microbes enabled diet shifts or diet shifts occurred first and microbial evolution followed requires further research to disentangle. Nonetheless, we find that necrophagous microbiomes, vertebrate and invertebrate alike, have functional commonalities regardless of their taxonomy.more » « less
-
Theoretical frameworks of terrestrial community assembly often focus on single trophic levels (e.g. plants) without considering how complex interdependencies across different trophic levels influence assembly mechanisms. Yet, when multiple trophic levels are considered (e.g. plant–pollinator, plant–microbe interactions) the focus is typically on network analyses at local spatial scales. As spatial variation in biodiversity (β‐diversity) is increasingly being recognized for its relevance in understanding community assembly and conservation, considering how β‐diversity at one trophic level may be influenced by assembly processes that alter abundance and composition of interacting communities at a different trophic level (multitrophic dependency) is critical. Here, we build on single trophic level community assembly frameworks to explore the assembly processes affecting β‐diversity in multitrophic communities comprising flowering plants, their bee pollinators, and the corresponding bee‐gut microbiota to better understand the importance of multitrophic dependency in community assembly. Using distance‐based redundancy analysis and variation partitioning, we investigated community assembly processes across three interconnected trophic levels in two ecological regions in southern California: the Santa Monica Mountains and three islands of the Channel Island Archipelago. We found that the deterministic effects of multitrophic dependency are stronger on directly connected trophic levels than on indirectly connected trophic levels (i.e. flowers explain bee communities and bees explain bee‐gut bacteria communities, but flowers weakly explain variation in bee‐gut bacteria communities). We also found notable regional variation, where multitrophic dependency was weaker on the Channel Islands as ecological drift was more pronounced. Our results suggest that integrating the influence of multitrophic dependency on community assembly is important for elucidating drivers of β‐diversity and that multitrophic dependency can be determined by the regional context in which β‐diversity is measured. Taken together, our results highlight the importance of considering multiscale perspectives – both multitrophic and multiregional – in community assembly to fully elucidate assembly processes.more » « lessFree, publicly-accessible full text available April 1, 2026
-
Pathogens and parasites of solitary bees have been studied for decades, but the microbiome as a whole is poorly understood for most taxa. Comparative analyses of microbiome features such as composition, abundance, and specificity, can shed light on bee ecology and the evolution of host–microbe interactions. Here we study microbiomes of ground-nesting cellophane bees (Colletidae: Diphaglossinae). From a microbial point of view, the diphaglossine genus Ptiloglossa is particularly remarkable: their larval provisions are liquid and smell consistently of fermentation. We sampled larval provisions and various life stages from wild nests of Ptiloglossa arizonensis and two species of closely related genera: Caupolicana yarrowi and Crawfordapis luctuosa . We also sampled nectar collected by P. arizonensis . Using 16S rRNA gene sequencing, we find that larval provisions of all three bee species are near-monocultures of lactobacilli. Nectar communities are more diverse, suggesting ecological filtering. Shotgun metagenomic and phylogenetic data indicate that Ptiloglossa culture multiple species and strains of Apilactobacillus , which circulate among bees and flowers. Larval lactobacilli disappear before pupation, and hence are likely not vertically transmitted, but rather reacquired from flowers as adults. Thus, brood cell microbiomes are qualitatively similar between diphaglossine bees and other solitary bees: lactobacilli-dominated, environmentally acquired, and non-species-specific. However, shotgun metagenomes provide evidence of a shift in bacterial abundance. As compared with several other bee species, Ptiloglossa have much higher ratios of bacterial to plant biomass in larval provisions, matching the unusually fermentative smell of their brood cells. Overall, Ptiloglossa illustrate a path by which hosts can evolve quantitatively novel symbioses: not by acquiring or domesticating novel symbionts, but by altering the microenvironment to favor growth of already widespread and generalist microbes.more » « less
-
Despite the increasingly documented occurrence of individual specialization, the relationship between individual consumer interactions and diet-related microbial communities in wild populations is still unclear. Using data from nests of the bee Ceratina australensis from three different wild populations, we combine metabarcoding and network approaches to explore the existence of individual variation in resource use within and across populations, and whether dietary specialization affects the richness of pollen-associated microbes. We reveal the existence of marked dietary specialization. In the most specialized population, we also show that individuals' diet breadth was positively related to the richness of fungi, but not bacteria. Overall, individual specialization appeared to have a weak or negligible effect on the microbial richness of nests, suggesting that different mechanisms beyond environmental transmission may be at play regarding microbial acquisition in wild bees.more » « less
-
Cavanaugh, Colleen M. (Ed.)ABSTRACT Diet and gut microbiomes are intricately linked on both short and long timescales. Changes in diet can alter the microbiome, while microbes in turn allow hosts to access novel diets. Bees are wasps that switched to a vegetarian lifestyle, and the vast majority of bees feed on pollen and nectar. Some stingless bee species, however, also collect carrion, and a few have fully reverted to a necrophagous lifestyle, relying on carrion for protein and forgoing flower visitation altogether. These “vulture” bees belong to the corbiculate apid clade, which is known for its ancient association with a small group of core microbiome phylotypes. Here, we investigate the vulture bee microbiome, along with closely related facultatively necrophagous and obligately pollinivorous species, to understand how these diets interact with microbiome structure. Via deep sequencing of the 16S rRNA gene and subsequent community analyses, we find that vulture bees have lost some core microbes, retained others, and entered into novel associations with acidophilic microbes found in the environment and on carrion. The abundance of acidophilic bacteria suggests that an acidic gut is important for vulture bee nutrition and health, as has been found in other carrion-feeding animals. Facultatively necrophagous bees have more variable microbiomes than strictly pollinivorous bees, suggesting that bee diet may interact with microbiomes on both short and long timescales. Further study of vulture bees promises to provide rich insights into the role of the microbiome in extreme diet switches. IMPORTANCE When asked where to find bees, people often picture fields of wildflowers. While true for almost all species, there is a group of specialized bees, also known as the vulture bees, that instead can be found slicing chunks of meat from carcasses in tropical rainforests. In this study, researchers compared the microbiomes of closely related bees that live in the same region but vary in their dietary lifestyles: some exclusively consume pollen and nectar, others exclusively depend on carrion for their protein, and some consume all of the above. Researchers found that vulture bees lost some ancestral “core” microbes, retained others, and entered into novel associations with acidophilic microbes, which have similarly been found in other carrion-feeding animals such as vultures, these bees’ namesake. This research expands our understanding of how diet interacts with microbiomes on both short and long timescales in one of the world’s biodiversity hot spots.more » « less
An official website of the United States government
