Surrogate models driven by sizeable datasets and scientific machine-learning methods have emerged as an attractive microstructure simulation tool with the potential to deliver predictive microstructure evolution dynamics with huge savings in computational costs. Taking 2D and 3D grain growth simulations as an example, we present a completely overhauled computational framework based on graph neural networks with not only excellent agreement to both the ground truth phase-field methods and theoretical predictions, but enhanced accuracy and efficiency compared to previous works based on convolutional neural networks. These improvements can be attributed to the graph representation, both improved predictive power and a more flexible data structure amenable to adaptive mesh refinement. As the simulated microstructures coarsen, our method can adaptively adopt remeshed grids and larger timesteps to achieve further speedup. The data-to-model pipeline with training procedures together with the source codes are provided.
- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources6
- Resource Type
-
00000060000
- More
- Availability
-
51
- Author / Contributor
- Filter by Author / Creator
-
-
Tang, Ming (6)
-
Ge, Mingyuan (4)
-
Lee, Wah-Keat (4)
-
Wang, Fan (4)
-
Xiao, Xianghui (4)
-
Zhang, Youtian (3)
-
Fan, Shaoxun (2)
-
Hitt, Andrew (2)
-
Li, Zeyuan (2)
-
Sadigh, Babak (2)
-
Savsatli, Yavuz (2)
-
Wang, Jun (2)
-
Yang, Kaiqi (2)
-
Zhou, Fei (2)
-
Aberg, Daniel (1)
-
Agarwal, Harsh (1)
-
Arsenault, Renata (1)
-
Bloom, Ira (1)
-
Bullen, Dennis (1)
-
Cao, Yifan (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Savsatli, Yavuz ; Wang, Fan ; Guo, Hua ; Li, Zeyuan ; Hitt, Andrew ; Zhan, Haizhou ; Ge, Mingyuan ; Xiao, Xianghui ; Lee, Wah-Keat ; Agarwal, Harsh ; et al ( , ACS Energy Letters)Free, publicly-accessible full text available June 28, 2025
-
Hitt, Andrew ; Wang, Fan ; Li, Zeyuan ; Ge, Mingyuan ; Zhang, Youtian ; Savsatli, Yavuz ; Xiao, Xianghui ; Lee, Wah-Keat ; Stephens, Ryan ; Tang, Ming ( , Energy Storage Materials)
-
Wang, Fan ; Yang, Kaiqi ; Ge, Mingyuan ; Wang, Jiajun ; Wang, Jun ; Xiao, Xianghui ; Lee, Wah-Keat ; Li, Linsen ; Tang, Ming ( , ACS Energy Letters)
-
Ma, Xiaotu ; Chen, Mengyuan ; Zheng, Zhangfeng ; Bullen, Dennis ; Wang, Jun ; Harrison, Chloe ; Gratz, Eric ; Lin, Yulin ; Yang, Zhenzhen ; Zhang, Youtian ; et al ( , Joule)
-
Yang, Kaiqi ; Cao, Yifan ; Zhang, Youtian ; Fan, Shaoxun ; Tang, Ming ; Aberg, Daniel ; Sadigh, Babak ; Zhou, Fei ( , Patterns)