Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            The genome inside the eukaryotic cells is guarded by a unique shell structure, called the nuclear envelope (NE), made of lipid membranes. This structure has an ultra torus topology with thousands of torus-shaped holes that imparts the structure a high flexural stiffness. Inspired from this biological design, here we present a novel “torene” architecture to design lightweight shell structures with ultra-stiffness for engineering applications. We perform finite element analyses on classic benchmark problems to investigate the mechanics of torene shells. This study reveals that the torene shells can achieve one order of magnitude or higher flexural stiffness than traditional shells with the same amount of material. This novel geometric strategy opens new avenues to exploit additive manufacturing to design lightweight shell structures for extreme mechanical environments.more » « less
- 
            Experimental studies reveal that the anionic lipid phosphatidic acid (POPA), non-phospholipid cholesterol, and cationic lipid DOTAP inhibit the gating of voltage-sensitive potassium (Kv) channels. Here, we develop a continuum electromechanical model to investigate the interaction of these lipids with the ion channel. Our model suggests that: (i) POPA lipids may restrict the vertical motion of the voltage-sensor domain through direct electrostatic interactions; (ii) cholesterol may oppose the radial motion of the pore domain of the channel by increasing the mechanical rigidity of the membrane; and (iii) DOTAP can reduce the effect of electrostatic forces by regulating the dielectric constant at the channel–lipid interface. The electromechanical model predictions for the three lipid types match well with the experimental observations and provide mechanistic insights into lipid-dependent gating of Kv channels.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available