skip to main content


Search for: All records

Award ID contains: 1931193

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Interband cascade lasers (ICLs) based on the type-II quantum well (QW) active region have attracted much attention for a range of practical applications in the mid-infrared due, in part, to their low power consumption. However, extending the operating wavelength of these ICLs into the long-wave infrared region presents several challenges including the reduced thermal conductivity of the optical cladding layers and the diminished wavefunction overlap in the type-II QW. One solution to alleviate the former concern is to use InAs-based ICLs. To solve the latter problem, InAs 0.5 P 0.5 barriers are introduced in the active region, which lowers the electronic energy level and allows for the InAs well width to be reduced at longer emission wavelengths. Here the advancement of long wavelength ICLs, made from four new InAs-based ICL wafers grown by molecular beam epitaxy, is reported. These ICLs lased in the wavelength range from 10 to 13 µ m and showed significantly improved performance compared with previous ICLs, including the first demonstration of broad-area devices operating in continuous wave mode beyond 12 µ m. These ICLs exhibited substantially increased output powers with reduced threshold voltages ( V th ) and current densities ( J th ). They operated at temperatures up to 40 K higher than previous ICLs at similar wavelengths. 
    more » « less
  2. InAs-based interband cascade lasers (ICLs) can be more easily adapted toward long wavelength operation than their GaSb counterparts. Devices made from two recent ICL wafers with an advanced waveguide structure are reported, which demonstrate improved device performance in terms of reduced threshold current densities for ICLs near 11  μm or extended operating wavelength beyond 13  μm. The ICLs near 11  μm yielded a significantly reduced continuous wave (cw) lasing threshold of 23 A/cm2at 80 K with substantially increased cw output power, compared with previously reported ICLs at similar wavelengths. ICLs made from the second wafer incorporated an innovative quantum well active region, comprised of InAsP layers, and lased in the pulsed-mode up to 120 K at 13.2  μm, which is the longest wavelength achieved for III–V interband lasers.

     
    more » « less
  3. Zhu, Ning Hua ; Hofmann, Werner H. ; He, Jian-Jun (Ed.)
    Mid-infrared semiconductor lasers have a wide range of applications in gas sensing, environmental monitoring, medical diagnosis and other fields. The V-coupled cavity laser (VCCL) approach has been successfully applied in the communication band to achieve single-mode operation with a wide tuning range because of its advantages of no grating, compact structure and simple wavelength control. In this paper, the concept of V-coupled cavity is introduced to the interband cascaded lasers, and a monolithically integrated mid-infrared widely tunable single-mode laser is developed. In addition, we experimentally demonstrated a simple and general algorithm for wavelength tuning controlled by two electrodes synchronously, and realized quasi-continuous tuning of single-mode wavelength in mid-infrared interband cascade laser based on the V-coupled cavity configuration for the first time. In the tuning process, the injection current of the short cavity remains unchanged, and the stepped increase of the long cavity current is equivalent to the realization of discrete tuning with the channel spacing of 1.1 nm determined by the short cavity. With the increase of the injection current of the coupler electrode while fixing the long cavity current, the thermo-optic effect caused by the coupler current will cause the refractive index of the two FP cavities to change together, thus realizing the fine tuning of the laser wavelength. A total tuning range of 53.2 nm has been achieved, from 2.8244 μm to 2.8776 μm, with the temperature adjusted from 110K to 120K. 
    more » « less
  4. We demonstrate widely tunable single-mode V-coupled-cavity lasers emitting at wavelengths near 3 µm based on a type-II interband cascade (IC) structure. The mode selection is achieved using a half-wave V-coupler designed for the IC structure in the mid-infrared range. The laser waveguides and cavity structure are deeply etched in a single etching step, without any grating. By changing the injection current at a fixed heat-sink temperature, a tuning range over 35 nm can be achieved with a side-mode suppression-ratio up to 28 dB. The tuning range can be extended to 60 nm when combined with the adjustments of the heat-sink temperature.

     
    more » « less
  5. By studying two interband cascade laser (ICL) wafers with structural parameters that deviated considerably from the design, the durability of the device performance against structural variations was explored. Even with the lasing wavelength blue shifted by more than 700 nm from the designed value near 4.6 μm at 300 K, the ICLs still performed very well with a threshold current density as low as 320 A/cm2 at 300 K, providing solid experimental evidence of the tolerance of ICL performance on structural variations. 
    more » « less