skip to main content


Search for: All records

Award ID contains: 1931292

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Automated manipulation of small particles using external (e.g., magnetic, electric and acoustic) fields has been an emerging technique widely used in different areas. The manipulation typically necessitates a reduced‐order physical model characterizing the field‐driven motion of particles in a complex environment. Such models are available only for highly idealized settings but are absent for a general scenario of particle manipulation typically involving complex nonlinear processes, which has limited its application. In this work, the authors present a data‐driven architecture for controlling particles in microfluidics based on hydrodynamic manipulation. The architecture replaces the difficult‐to‐derive model by a generally trainable artificial neural network to describe the kinematics of particles, and subsequently identifies the optimal operations to manipulate particles. The authors successfully demonstrate a diverse set of particle manipulations in a numerically emulated microfluidic chamber, including targeted assembly of particles and subsequent navigation of the assembled cluster, simultaneous path planning for multiple particles, and steering one particle through obstacles. The approach achieves both spatial and temporal controllability of high precision for these settings. This achievement revolutionizes automated particle manipulation, showing the potential of data‐driven approaches and machine learning in improving microfluidic technologies for enhanced flexibility and intelligence.

     
    more » « less
  2. The use of machine learning techniques in the development of microscopic swimmers has drawn considerable attention in recent years. In particular, reinforcement learning has been shown useful in enabling swimmers to learn effective propulsion strategies through its interactions with the surroundings. In this work, we apply a reinforcement learning approach to identify swimming gaits of a multi-link model swimmer. The swimmer consists of multiple rigid links connected serially with hinges, which can rotate freely to change the relative angles between neighboring links. Purcell [“Life at low Reynolds number,” Am. J. Phys. 45, 3 (1977)] demonstrated how the particular case of a three-link swimmer (now known as Purcell's swimmer) can perform a prescribed sequence of hinge rotation to generate self-propulsion in the absence of inertia. Here, without relying on any prior knowledge of low-Reynolds-number locomotion, we first demonstrate the use of reinforcement learning in identifying the classical swimming gaits of Purcell's swimmer for case of three links. We next examine the new swimming gaits acquired by the learning process as the number of links increases. We also consider the scenarios when only a single hinge is allowed to rotate at a time and when simultaneous rotation of multiple hinges is allowed. We contrast the difference in the locomotory gaits learned by the swimmers in these scenarios and discuss their propulsion performance. Taken together, our results demonstrate how a simple reinforcement learning technique can be applied to identify both classical and new swimming gaits at low Reynolds numbers. 
    more » « less
  3. Abstract Swimming microorganisms switch between locomotory gaits to enable complex navigation strategies such as run-and-tumble to explore their environments and search for specific targets. This ability of targeted navigation via adaptive gait-switching is particularly desirable for the development of smart artificial microswimmers that can perform complex biomedical tasks such as targeted drug delivery and microsurgery in an autonomous manner. Here we use a deep reinforcement learning approach to enable a model microswimmer to self-learn effective locomotory gaits for translation, rotation and combined motions. The Artificial Intelligence (AI) powered swimmer can switch between various locomotory gaits adaptively to navigate towards target locations. The multimodal navigation strategy is reminiscent of gait-switching behaviors adopted by swimming microorganisms. We show that the strategy advised by AI is robust to flow perturbations and versatile in enabling the swimmer to perform complex tasks such as path tracing without being explicitly programmed. Taken together, our results demonstrate the vast potential of these AI-powered swimmers for applications in unpredictable, complex fluid environments. 
    more » « less
  4. The effects of viscoelasticity have been shown to manifest themselves via symmetry breaking. In this investigation, we show a novel phenomenon that arises from this idea. We observe that when a dense sphere is rotated near a wall (the rotation being aligned with the wall-normal direction and gravity), it levitates to a fixed distance away from the wall. Since the shear is larger in the gap (between the sphere and the wall) than in the open side of the sphere, the shear-induced elastic stresses are thus asymmetric, resulting in a net elastic vertical force that balances the weight of the sphere. We conduct experiments, theoretical models and numerical simulations for rotating spheres of various sizes and densities in a Boger-type fluid. In the small-Deborah-number range, the results are collapsed into a universal trend by considering a dimensionless group of the ratio of elastic to gravitational forces. 
    more » « less
  5. Biological and artificial microswimmers often encounter fluid media with non-Newtonian rheological properties. In particular, many biological fluids such as blood and mucus are shear-thinning. Recent studies have demonstrated how shear-thinning rheology can impact substantially the propulsion performance in different manners. In this work, we examine the effect of geometrical shape upon locomotion in a shear-thinning fluid using a prolate spheroidal squirmer model. We use a combination of asymptotic analysis and numerical simulations to quantify how particle geometry impacts the speed and the energetic cost of swimming. The results demonstrate the advantages of spheroidal over spherical swimmers in terms of both swimming speed and energetic efficiency when squirming through a shear-thinning fluid. More generally, the findings suggest the possibility of tuning the swimmer geometry to better exploit non-Newtonian rheological behaviours for more effective locomotion in complex fluids. 
    more » « less
  6. Particle–wall interactions have broad biological and technological applications. In particular, some artificial microswimmers capitalize on their translation–rotation coupling near a wall to generate directed propulsion. Emerging biomedical applications of these microswimmers in complex biological fluids prompt questions on the impact of non-Newtonian rheology on their propulsion. In this work, we report some intriguing effects of shear-thinning rheology, a ubiquitous non-Newtonian behaviour of biological fluids, on the translation–rotation coupling of a particle near a wall. One particularly interesting feature revealed here is that the wall-induced translation by rotation can occur in a direction opposite to what might be intuitively expected for an object rolling on a solid substrate. We elucidate the underlying physical mechanism and discuss its implications on the design of micromachines and bacterial motion near walls in complex fluids. 
    more » « less
  7. null (Ed.)
    Some micro-organisms and artificial micro-swimmers propel at low Reynolds numbers (Re) via the interaction of their flexible appendages with the surrounding fluid. While their locomotion has been extensively studied with a Newtonian fluid assumption, in realistic biological environments these micro-swimmers invariably encounter rheologically complex fluids. In particular, many biological fluids such as blood and different types of mucus have shear-thinning viscosities. The influence of this ubiquitous non-Newtonian rheology on the performance of flexible swimmers remains largely unknown. Here, we present a first study to examine how shear-thinning rheology alters the fluid-structure interaction and hence the propulsion performance of elastic swimmers at low Re. Via a simple elastic swimmer actuated magnetically, we demonstrate that shear-thinning rheology can either enhance or hinder elastohydrodynamic propulsion, depending on the intricate interplay between elastic and viscous forces as well as the magnetic actuation. We also use a reduced-order model to elucidate the mechanisms underlying the enhanced and hindered propulsion observed in different physical regimes. These results and improved understanding could guide the design of flexible micro-swimmers in non-Newtonian fluids. 
    more » « less
  8. null (Ed.)