skip to main content


Search for: All records

Award ID contains: 1931309

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Bacterial-derived RNA and DNA can function as ligands for intracellular receptor activation and induce downstream signaling to modulate the host response to bacterial infection. The mechanisms underlying the secretion of immunomodulatory RNA and DNA by pathogens such asStaphylococcus aureusand their delivery to intracellular host cell receptors are not well understood. Recently, extracellular membrane vesicle (MV) production has been proposed as a general secretion mechanism that could facilitate the delivery of functional bacterial nucleic acids into host cells.S. aureusproduce membrane-bound, spherical, nano-sized, MVs packaged with a select array of bioactive macromolecules and they have been shown to play important roles in bacterial virulence and in immune modulation through the transmission of biologic signals to host cells. Here we show thatS. aureussecretes RNA and DNA molecules that are mostly protected from degradation by their association with MVs. Importantly, we demonstrate that MVs can be delivered into cultured macrophage cells and subsequently stimulate a potent IFN-β response in recipient cells via activation of endosomal Toll-like receptors. These findings advance our understanding of the mechanisms by which bacterial nucleic acids traffic extracellularly to trigger the modulation of host immune responses.

     
    more » « less
  2. Free, publicly-accessible full text available November 7, 2024
  3. Free, publicly-accessible full text available May 1, 2024
  4. null (Ed.)
    Selective cargo packaging into bacterial extracellular vesicles has been reported and implicated in many biological processes, however, the mechanism behind the selectivity has remained largely unexplored. In this study, proteomic analysis of outer membrane (OM) and OM vesicle (OMV) fractions from enterotoxigenic E. coli revealed significant differences in protein abundance in the OMV and OM fractions for cultures shifted to oxidative stress conditions. Analysis of sequences of proteins preferentially packaged into OMVs showed that proteins with oxidizable residues were more packaged into OMVs in comparison with those retained in the membrane. In addition, the results indicated two distinct classes of OM-associated proteins were differentially packaged into OMVs as a function of peroxide treatment. Implementing a Bayesian hierarchical model, OM lipoproteins were determined to be preferentially exported during stress whereas integral OM proteins were preferentially retained in the cell. Selectivity was determined to be independent of transcriptional regulation of the proteins upon oxidative stress and was validated using randomly selected protein candidates from the different cargo classes. Based on these data, a hypothetical functional and mechanistic basis for cargo selectivity was tested using OmpA constructs. Our study reveals a basic mechanism for cargo selectivity into OMVs that may be useful for the engineering of OMVs for future biotechnological applications. 
    more » « less
  5. null (Ed.)
    All cells produce extracellular vesicles (EVs). These biological packages contain complex mixtures of molecular cargo and have a variety of functions, including interkingdom communication. Recent discoveries highlight the roles microbial EVs may play in the environment with respect to interactions with plants as well as nutrient cycling. These studies have also identified molecules present within EVs and associated with EV surfaces that contribute to these functions. In parallel, studies of engineered nanomaterials have developed methods to track and model small particle behavior in complex systems and measure the relative importance of various surface features on transport and function. While studies of EV behavior in complex environmental conditions have not yet employed transdisciplinary approaches, it is increasingly clear that expertise from disparate fields will be critical to understand the role of EVs in these systems. Here, we outline how the convergence of biology, soil geochemistry, and colloid science can both develop and address questions surrounding the basic principles governing EV-mediated interkingdom interactions. 
    more » « less
  6. null (Ed.)