skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1931415

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We show that atmospheric gravity waves can generate plasma ducts and irregularities in the plasmasphere using the coupled SAMI3/WACCM‐X model. We find the equatorial electron density is irregular as a function of longitude which is consistent with CRRES measurements (Clilverd et al., 2007,https://doi.org/10.1029/2007ja012416). We also find that plasma ducts can be generated forL‐shells in the range 1.5–3.0 with lifetimes of ∼ 0.5 hr; this is in line with observations of ducted VLF wave propagation with lifetimes of 0.5–2.0 hr (Clilverd et al., 2008,https://doi.org/10.1029/2007ja012602; Singh et al., 1998,https://doi.org/10.1016/s1364-6826(98)00001-7). 
    more » « less
  2. Abstract We report results from a self‐consistent global simulation model in which a large‐scale equatorial plasma bubble (EPB) forms during a midnight temperature maximum (MTM). The global model comprises the ionospheric code SAMI3 and the atmosphere/thermosphere code WACCM‐X. We consider solar minimum conditions for the month of August. We show that an EPB forms during an MTM in the Pacific sector and is caused by equatorward neutral wind flows. Although this is consistent with the theoretical result that a meridional neutral wind (V) with a negative gradient (∂V/∂θ < 0) is a destabilizing influence [Huba & Krall, 2013,https://doi.org/10.1002/grl.50292] (where a northward meridional neutral windVis positive andθis the latitude and increases in the northward direction), we find that the primary cause of the EPB is the large decrease in the Pedersen conductance caused by the equatorward winds. 
    more » « less
  3. Abstract A linear theory of the generalized Rayleigh‐Taylor instability (GRTI) is derived which includes ion inertia and acceleration forces, as well asEregion drivers: the zonal neutral wind and plasma drift. This is in contrast to theFregion drivers (aside from gravity): the meridional neutral wind and the meridional/vertical plasma drifts. Both a local theory and a flux‐tube integrated theory are presented with application to the onset of ionosphere irregularities associated with equatorial spreadF. Inertia and acceleration forces do not affect the growth rate of the GRTI for nominal ionospheric conditions, but theEregion zonal drifts can significantly increase or decrease the growth rate of the GRTI in the equatorial and mid‐latitude ionosphere depending on their direction. 
    more » « less
  4. Abstract We report the first results of a global ionosphere/thermosphere simulation study that self‐consistently generates large‐scale equatorial spreadF(ESF) plasma bubbles in the postsunset ionosphere. The coupled model comprises the ionospheric code SAMI3 and the atmosphere/thermosphere code WACCM‐X. Two cases are modeled for different seasons and geophysical conditions: the March case (low solar activity: F10.7 = 70) and the July case (high solar activity: F10.7 = 170). We find that equatorial plasma bubbles formed and penetrated into the topsideFlayer for the March case but not the July case. For the March case, a series of bubbles formed in the Atlantic sector with irregularity spacings in the range 400–1,200 km, rose to over 800 km, and persisted until after midnight. These results are consistent with recent GOLD observations. Calculation of the generalized Rayleigh‐Taylor instability (GRTI) growth rate shows that the e‐folding time was shorter for the March case than the July case. 
    more » « less
  5. The development of the ionosphere model SAMI2 at the Naval Research Laboratory (NRL) is described. The genesis of the code and the adversities we faced in developing the model are described. The evolution of the numerical algorithms used is discussed as well as the decision to open-source the code. An example of a new discovery made with the code, the formation of an electron `hole' in the nighttime, high-altitude, low-latitude ionosphere, is given. 
    more » « less