skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1931592

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This work presents a computationally inexpensive framework for modeling combined pyrolysis and gas-phase combustion of general vegetative fuels, which improves on existing solvers by incorporating detailed chemical kinetics and predicts the ignition behavior. The main motivation for this work is capturing the burning behavior of live wildland fuels, which can differ from those of dead fuels. Existing models are unable to accurately predict the ignition time and temperature variations for the live fuel cases. The kinetics model used here accounts for the non-primary constituents of fuels, or “extractives”, which are expected to play a role in this distinct behavior. Validation studies show that the developed model is a promising tool for understanding the effects of fuel chemistry and spatial variation on ignition and fuel burning behavior. Case studies using the tool suggest that variations in ignition time can be explained by combined effects of variables such as moisture content, initial composition, and density. 
    more » « less