skip to main content


Search for: All records

Award ID contains: 1931871

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Recently, a new trend of exploring training sparsity has emerged, which remove parameters during training, leading to both training and inference efficiency improvement. This line of works primarily aims to obtain a single sparse model under a pre-defined large sparsity ratio. It leads to a static/fixed sparse inference model that is not capable of adjusting or re-configuring its computation complexity (i.e., inference structure, latency) after training for real-world varying and dynamic hardware resource availability. To enable such run-time or post-training network morphing, the concept of `dynamic inference' or `training-once-for-all' has been proposed to train a single network consisting of multiple sub-nets once, but each sub-net could perform the same inference function with different computing complexity. However, the traditional dynamic inference training method requires a joint training scheme with multi-objective optimization, which suffers from very large training overhead. In this work, for the first time, we propose a novel alternating sparse training (AST) scheme to train multiple sparse sub-nets for dynamic inference without extra training cost compared to the case of training a single sparse model from scratch. Furthermore, to mitigate the interference of weight update among sub-nets, we propose gradient correction within the inner-group iterations to reduce their weight update interference. We validate the proposed AST on multiple datasets against state-of-the-art sparse training method, which shows that AST achieves similar or better accuracy, but only needs to train once to get multiple sparse sub-nets with different sparsity ratios. More importantly, compared with the traditional joint training based dynamic inference training methodology, the large training overhead is completely eliminated without affecting the accuracy of each sub-net. 
    more » « less
  2. By learning a sequence of tasks continually, an agent in continual learning (CL) can improve the learning performance of both a new task and `old' tasks by leveraging the forward knowledge transfer and the backward knowledge transfer, respectively. However, most existing CL methods focus on addressing catastrophic forgetting in neural networks by minimizing the modification of the learnt model for old tasks. This inevitably limits the backward knowledge transfer from the new task to the old tasks, because judicious model updates could possibly improve the learning performance of the old tasks as well. To tackle this problem, we first theoretically analyze the conditions under which updating the learnt model of old tasks could be beneficial for CL and also lead to backward knowledge transfer, based on the gradient projection onto the input subspaces of old tasks. Building on the theoretical analysis, we next develop a ContinUal learning method with Backward knowlEdge tRansfer (CUBER), for a fixed capacity neural network without data replay. In particular, CUBER first characterizes the task correlation to identify the positively correlated old tasks in a layer-wise manner, and then selectively modifies the learnt model of the old tasks when learning the new task. Experimental studies show that CUBER can even achieve positive backward knowledge transfer on several existing CL benchmarks for the first time without data replay, where the related baselines still suffer from catastrophic forgetting (negative backward knowledge transfer). The superior performance of CUBER on the backward knowledge transfer also leads to higher accuracy accordingly. 
    more » « less
  3. ReRAM crossbar array as a high-parallel fast and energy-efficient structure attracts much attention, especially on the acceleration of Deep Neural Network (DNN) inference on one specific task. However, due to the high energy consumption of weight re-programming and the ReRAM cells’ low endurance problem, adapting the crossbar array for multiple tasks has not been well explored. In this paper, we propose XMA, a novel crossbar-aware shift-based mask learning method for multiple task adaption in the ReRAM crossbar DNN accelerator for the first time. XMA leverages the popular mask-based learning algorithm’s benefit to mitigate catastrophic forgetting and learn a task-specific, crossbar column-wise, and shift-based multi-level mask, rather than the most commonly used elementwise binary mask, for each new task based on a frozen backbone model. With our crossbar-aware design innovation, the required masking operation to adapt for a new task could be implemented in an existing crossbar-based convolution engine with minimal hardware/memory overhead and, more importantly, no need for power-hungry cell re-programming, unlike prior works. The extensive experimental results show that, compared with state-of-the art multiple task adaption Piggyback method [1], XMA achieves 3.19% higher accuracy on average, while saving 96.6% memory overhead. Moreover, by eliminating cell re-programming, XMA achieves ∼4.3× higher energy efficiency than Piggyback. 
    more » « less
  4. Transfer learning, where the goal is to transfer the well-trained deep learning models from a primary source task to a new task, is a crucial learning scheme for on-device machine learning, due to the fact that IoT/edge devices collect and then process massive data in our daily life. However, due to the tiny memory constraint in IoT/edge devices, such on-device learning requires ultra-small training memory footprint, bringing new challenges for memory-efficient learning. Many existing works solve this problem by reducing the number of trainable parameters. However, this doesn't directly translate to memory-saving since the major bottleneck is the activations, not parameters. To develop memory-efficient on-device transfer learning, in this work, we are the first to approach the concept of transfer learning from a new perspective of intermediate feature reprogramming of a pre-trained model (i.e., backbone). To perform this lightweight and memory-efficient reprogramming, we propose to train a tiny Reprogramming Network (Rep-Net) directly from the new task input data, while freezing the backbone model. The proposed Rep-Net model interchanges the features with the backbone model using an activation connector at regular intervals to mutually benefit both the backbone model and Rep-Net model features. Through extensive experiments, we validate each design specs of the proposed Rep-Net model in achieving highly memory-efficient on-device reprogramming. Our experiments establish the superior performance (i.e., low training memory and high accuracy) of Rep-Net compared to SOTA on-device transfer learning schemes across multiple benchmarks. 
    more » « less
  5. Nowadays, one practical limitation of deep neural network (DNN) is its high degree of specialization to a single task or domain (e.g., one visual domain). It motivates researchers to develop algorithms that can adapt DNN model to multiple domains sequentially, while still performing well on the past domains, which is known as multi-domain learning. Almost all conventional methods only focus on improving accuracy with minimal parameter update, while ignoring high computing and memory cost during training, which makes it difficult to deploy multi-domain learning into more and more widely used resource-limited edge devices, like mobile phone, IoT, embedded system, etc. During our study in multi-domain training process, we observe that large memory used for activation storage is the bottleneck that largely limits the training time and cost on edge devices. To reduce training memory usage, while keeping the domain adaption accuracy performance, we propose Dynamic Additive Attention Adaption (DA3), a novel memory-efficient on-device multi-domain learning method. DA3 learns a novel additive attention adaptor module, while freezing the weights of the pre-trained backbone model for each domain. Differentiating from prior works, such module not only mitigates activation memory buffering for reducing memory usage during training, but also serves as a dynamic gating mechanism to reduce the computation cost for fast inference. We validate DA3 on multiple datasets against state-of-the-art methods, which shows great improvement in both accuracy and training time. Moreover, we deployed DA3 into the popular NIVDIA Jetson Nano edge GPU, where the measured experimental results show our proposed \mldam reduces the on-device training memory consumption by 19x-37x, and training time by 2x, in comparison to the baseline methods (e.g., standard fine-tuning, Parallel and Series Res. adaptor, and Piggyback). 
    more » « less
  6. Recent advancements in Deep Neural Networks (DNNs) have enabled widespread deployment in multiple security-sensitive domains. The need for resource-intensive training and the use of valuable domain-specific training data have made these models the top intellectual property (IP) for model owners. One of the major threats to DNN privacy is model extraction attacks where adversaries attempt to steal sensitive information in DNN models. In this work, we propose an advanced model extraction framework DeepSteal that steals DNN weights remotely for the first time with the aid of a memory side-channel attack. Our proposed DeepSteal comprises two key stages. Firstly, we develop a new weight bit information extraction method, called HammerLeak, through adopting the rowhammer-based fault technique as the information leakage vector. HammerLeak leverages several novel system-level techniques tailored for DNN applications to enable fast and efficient weight stealing. Secondly, we propose a novel substitute model training algorithm with Mean Clustering weight penalty, which leverages the partial leaked bit information effectively and generates a substitute prototype of the target victim model. We evaluate the proposed model extraction framework on three popular image datasets (e.g., CIFAR-10/100/GTSRB) and four DNN architectures (e.g., ResNet-18/34/Wide-ResNetNGG-11). The extracted substitute model has successfully achieved more than 90% test accuracy on deep residual networks for the CIFAR-10 dataset. Moreover, our extracted substitute model could also generate effective adversarial input samples to fool the victim model. Notably, it achieves similar performance (i.e., ~1-2% test accuracy under attack) as white-box adversarial input attack (e.g., PGD/Trades). 
    more » « less
  7. Leveraging the ReRAM crossbar-based In-Memory-Computing (IMC) to accelerate single task DNN inference has been widely studied. However, using the ReRAM crossbar for continual learning has not been explored yet. In this work, we propose XST, a novel crossbar column-wise sparse training framework for continual learning. XST significantly reduces the training cost and saves inference energy. More importantly, it is friendly to existing crossbar-based convolution engine with almost no hardware overhead. Compared with the state-of-the-art CPG method, the experiments show that XST's accuracy achieves 4.95 % higher accuracy. Furthermore, XST demonstrates ~5.59 × training speedup and 1.5 × inference energy-saving. 
    more » « less
  8. Recently, utilizing ReRAM crossbar array to accelerate DNN inference on single task has been widely studied. However, using the crossbar array for multiple task adaption has not been well explored. In this paper, for the first time, we propose XBM, a novel crossbar column-wise binary mask learning method for multiple task adaption in ReRAM crossbar DNN accelerator. XBM leverages the mask-based learning algorithm's benefit to avoid catastrophic forgetting to learn a task-specific mask for each new task. With our hardware-aware design innovation, the required masking operation to adapt for a new task could be easily implemented in existing crossbar based convolution engine with minimal hardware/ memory overhead and, more importantly, no need of power hungry cell re-programming, unlike prior works. The extensive experimental results show that compared with state-of-the-art multiple task adaption methods, XBM keeps the similar accuracy on new tasks while only requires 1.4% mask memory size compared with popular piggyback. Moreover, the elimination of cell re-programming or tuning saves up to 40% energy during new task adaption. 
    more » « less