skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1931937

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. High-flow events that significantly impact Water Resource Recovery Facility (WRRF) operations are rare, but accurately predicting these flows could improve treatment operations. Data-driven modeling approaches could be used; however, high flow events that impact operation are an infrequent occurrence, providing limited data from which to learn meaningful patterns. The performance of a statistical model (logistic regression) and two machine learning (ML) models (support vector machine and random forest) were evaluated to predict high flow events one-day-ahead to two plants located in different parts of the United States, Northern Virginia and the Gulf Coast of Texas, with combined and separate sewers, respectively. We compared baseline models (no synthetic data added) to models trained with synthetic data added from two different sampling techniques (SMOTE and ADASYN) that increased the representation of rare events in the training data. Both techniques enhanced the sample size of the very high-flow class, but ADASYN, which focused on generating synthetic samples near decision boundaries, led to greater improvements in model performance (reduced misclassification rates). Random forest combined with ADASYN achieved the best overall performance for both plants, demonstrating its robustness in identifying one-day-ahead extreme flow events to treatment plants. These results suggest that combining sampling techniques with ML has the potential to significantly improve the modeling of high-flow events at treatment plants. Our work will prove useful in building reliable predictive models that can inform management decisions needed for the better control of treatment operations. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026