Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The ant genus Tapinoma Foerster, 1850 is a moderately diverse group (81 valid species) that occurs worldwide. It includes the tramp species T. melanocephalum, whose evolutionary history, biogeographic origin, and population limits remain unclear. Here, we present a time-calibrated phylogeny and a biogeographic history inference of the genus based on thousands of Ultraconserved Element (UCE) loci. Focusing on T. melanocephalum, we used single nucleotide polymorphisms from UCE loci and COI sequences to analyze species boundaries based on nuclear and mitochondrial DNA. We recovered a monophyletic Tapinoma with an estimated crown age corresponding to middle Eocene (49.4 to 34.4 Ma). Phylogenomic data differentiated T. melanocephalum from T. jandai, a recently established species based on morphology, and revealed that the 2 species diverged ∼12 Ma. Population genetic analyses identified considerable molecular divergence among sampled T. melanocephalum populations, and a heterogeneous genetic structure, showing a weak relationship between genetic differentiation and geographic distance. A phylogeographic comparison of habitat preferences of T. melanocephalum revealed an ecological shift from undisturbed to urban environments, a phenomenon which may have facilitated its ubiquitous and global distribution. Our study presents the first phylogenomic framework for this globally distributed ant genus and molecularly delineates a worldwide pest ant species.more » « lessFree, publicly-accessible full text available September 1, 2026
-
Abstract AimThe standard latitudinal diversity gradient (LDG), in which species richness decreases from equator to pole, is a pervasive pattern observed in most organisms. Some lineages, however, exhibit inverse LDGs. Seemingly problematic, documenting and studying contrarian groups can advance understanding of LDGs generally. Here, we identify one such contrarian clade and use a historical approach to evaluate alternative hypotheses that might explain the group's atypical diversity pattern. We focus on the biogeographical conservatism hypothesis (BCH) and the diversification rate hypothesis (DRH). LocationGlobal. TaxonAnts (Hymenoptera: Formicidae: Stenammini). MethodsWe examined the shape of the LDG in Stenammini by plotting latitudinal midpoints for all extant, described species. We inferred a robust genome‐scale phylogeny using UCE data. We estimated divergence dates using beast2 and tested several biogeographical models inBioGeoBEARS. To examine diversification rates and test for a correlation between rate and latitude, we used the programs BAMM and STRAPP, respectively. ResultsStenammini has a skewed inverse LDG with a richness peak in the northern temperate zone. Phylogenomic analyses revealed five major clades and several instances of non‐monophyly among genera (Goniomma,Aphaenogaster). Stenammini and all its major lineages arose in the northern temperate zone. The tribe originated ~51 Ma during a climatic optimum and then diversified and dispersed southward as global climate cooled. Stenammini invaded the tropics at least seven times, but these events occurred more recently and were not linked with increased diversification. There is evidence for a diversification rate increase in HolarcticAphaenogaster + Messor, but we found no significant correlation between latitude and diversification rate generally. Main ConclusionsOur results largely support the BCH as an explanation for the inverse latitudinal gradient in Stenammini. The clade originated in the Holarctic and likely became more diverse there due to center‐of‐origin, time‐for‐speciation and niche conservatism effects, rather than latitudinal differences in diversification rate.more » « less
-
Abstract Uncovering the evolutionary history of the subfamilies Ectatomminae and Heteroponerinae, or ectaheteromorphs, is key to understanding a major branch of the ant tree of life. Despite their diversity and ecological importance, phylogenetic relationships in the group have not been well explored. One particularly suitable tool for resolving phylogeny is the use of ultraconserved elements (UCEs), which have been shown to be ideal markers at a variety of evolutionary time scales. In the present study, we enriched and sequenced 2,127 UCEs from 135 specimens of ectaheteromorph ants and investigated phylogeny using a variety of model-based phylogenomic methods. Trees recovered from partitioned maximum-likelihood and species-tree analyses were well resolved and largely congruent. The results are consistent with an expanded concept of Ectatomminae that now includes the subfamily Heteroponerinae new synonym and its single tribe Heteroponerini new combination. Eleven monophyletic groups are recognized as genera: Acanthoponera, Alfariastatus revived, Boltonia Camacho and Feitosa new genus, Ectatomma, Gnamptogenys, Heteroponera, Holcoponerastatus revived, Poneracanthastatus revived, Rhytidoponera, Stictoponerastatus revived, and Typhlomyrmex. The new phylogenetic framework and classification proposed here will shed light on the study of Ectatomminae taxonomy and systematics, as well as on the morphological evolution of the groups that it comprises.more » « less
-
Abstract Using genetic, morphological, and geographical evidence, we investigate the species-level taxonomy and evolutionary history of the Pseudomyrmex elongatulus group, a clade of ants distributed from southwestern United States to Costa Rica. Through targeted enrichment of 2,524 UCE (ultraconserved element) loci we generate a phylogenomic data set and clarify the phylogenetic relationships and biogeographic history of these ants. The crown group is estimated to have originated ~8 Ma, in Mexico and/or northern Central America, and subsequently expanded into southern Central America and the southwestern Nearctic. The P. elongatulus group contains a mix of low- and high-elevation species, and there were apparently multiple transitions between these habitat types. We uncover three examples of one species—of restricted or marginal geographical distribution—being embedded phylogenetically in another species, rendering the latter paraphyletic. One of these cases involves an apparent workerless social parasite that occurs sympatrically with its parent species, with the latter serving as host. This suggests a sympatric origin of the parasite species within the distribution range of its host. Species boundaries are tested using three molecular delimitation approaches (SODA, bPTP, BPP) but these methods generate inflated species estimates (26–46 species), evidently because of a failure to distinguish population structure from species differences. In a formal taxonomic revision of the P. elongatulus group, based on almost 3,000 specimens from ~625 localities, we allow for geographic variation within species and we employ distinctness-in-sympatry criteria for testing hypotheses about species limits. Under these guidelines we recognize 13 species, of which nine are new: P. arcanus, sp. nov. (western Mexico); P. capillatus, sp. nov. (western Mexico); P. cognatus, sp. nov. (Chiapas, Mexico to Nicaragua); P. comitator, sp. nov. (Chiapas, Mexico); P. ereptor, sp. nov. (Veracruz, Mexico); P. exoratus, sp. nov. (southeastern Mexico, Honduras); P. fasciatus, sp. nov. (Chiapas, Mexico to Costa Rica); P. nimbus, sp. nov. (Costa Rica); and P. veracruzensis, sp. nov. (Veracruz, Mexico). Our study highlights the value of combining phylogenomic, phenotypic, and geographical data to resolve taxonomic and evolutionary questions.more » « less
-
The genus-level classification of the ant subfamily Ponerinae (Hymenoptera: Formicidae) is revised based on a comprehensive phylogenomic analysis of more than 2,300 ultraconserved element (UCE) loci across 1,170 sampled specimens representing 1,020 taxa (600 valid species and 420 morphospecies) and all described ponerine genera known from workers. While most previously defined genus groups are recovered as monophyletic, several genera are shown to be polyphyletic or paraphyletic. To resolve these inconsistencies, four new genera are described:Boltonoponegen. nov.,Makebaponegen. nov.,Subiridoponegen. nov., andSritoponeragen. nov.Xiphopeltastat. rev.is revalidated andEuponerais restricted by expandingFisheroponeto absorb a paraphyletic assemblage.Mesoponerais split into four lineages, resulting in transfers toMakebapone,Subiridopone, andXiphopelta.Iroponerasyn. nov.is synonymized underCryptoponeand additional new synonymies at both the generic and species levels are established. Morphological diagnoses are revised for each affected genus, and updated species lists and new combinations are provided. The updated classification recognizes 54 valid genera within Ponerinae and acknowledges an additional lineage that will be formally described in a subsequent publication. To support identification and comparative studies, revised keys to all extant Ponerinae genera are provided, presented by biogeographic region (African and Malagasy, Palearctic–Indomalaya–Australasia, and New World). This classification is intended to provide a stable, phylogenetically informed framework for future research on ponerine ants.more » « lessFree, publicly-accessible full text available December 19, 2026
-
Abstract In tropical rain forests, the ant community can be divided into ground and arboreal faunas. Here, we report a thorough sampling of the arboreal ant fauna of La Selva Biological Station, a Neotropical rain forest site. Forty‐five canopy fogging samples were centered around large trees. Individual samples harbored an average of 35 ant species, with up to 55 species in a single sample. The fogging samples yielded 163 observed species total, out of a statistically estimated 199 species. We found no relationship between within‐sample ant richness and focal tree species, nor were the ant faunas of nearby trees more similar to each other than the faunas of widely spaced trees. Species density was high, and beta diversity was low: A single column of vegetation typically harbors at least a fifth of the entire arboreal ant fauna. Considering the entire fauna, based on 23,326 species occurrence records using a wide variety of collecting methods, 182 of 539 observed species (196 of 605, estimated statistically) were entirely arboreal. The arboreal ant fauna is thus about a third of the total La Selva ant fauna, a robust result because inventory completeness was similar for ground and arboreal ants. The taxonomic history of discovery of the species that make up the La Selva fauna reveals no disproportionately large pool of undiscovered ant species in the canopy. The last biotic frontier for tropical ants has been the rotten wood, leaf litter, and soil of the forest floor. Abstract in Spanish is available with online material.more » « less
-
Temperate zone ants overwinter using a variety of mechanisms. The genusFormicaoverwinters entirely as adults. In at least one species it has been demonstrated that winter workers are more corpulent than summer foragers, storing resources in their bodies and mobilizing them for early brood production in spring. Here we examine overwintering by the common western thatch ant,F. obscuripes. Excavation of a winter nest revealed only workers, distributed in multiple chambers in a roughly spherical region from 0.5 to 1.05 m deep. Worker size, as measured by head width, was weakly bimodal, with fewer workers in the small vs. large size class. We measured dry weights of workers from the winter nest and workers collected the previous summer from the surfaces of multiple nests in the vicinity, including our excavated nest. Controlling for size, there was no evidence of bimodality in winter worker weight, and winter workers were 59.7% heavier than summer foragers. These results suggest thatF. obscuripesworkers are at their maximum corpulence going into their first winter, expend their stored fat during spring, and mostly die before overwintering a second time. It remains uncertain whether workers can regain corpulence.more » « lessFree, publicly-accessible full text available May 28, 2026
-
Obligatory ant–plant symbioses often appear to be single evolutionary shifts within particular ant lineages; however, convergence can be revealed once natural history observations are complemented with molecular phylogenetics. Here, we describe a remarkable example of convergent evolution in an ant–plant symbiotic system. Exclusively arboreal,Myrmelachistaspecies can be generalized opportunists nesting in several plant species or obligately symbiotic, live-stem nesters of a narrow set of plant species. Instances of specialization withinMyrmelachistaare known from northern South America and throughout Middle America. In Middle America, a diverse radiation of specialists occupies understory treelets of lowland rainforests. The morphological and behavioural uniformity of specialists suggests that they form a monophyletic assemblage, diversifying after a single origin of specialization. Using ultraconserved element phylogenomics and ancestral state reconstructions, we show that shifts from opportunistic to obligately symbiotic evolved independently in South and Middle America. Furthermore, our analyses support a remarkable case of convergence within the Middle American radiation, with two independently evolved specialist clades, arising nearly simultaneously from putative opportunistic ancestors during the late Pliocene. This repeated evolution of a complex phenotype suggests similar mechanisms behind trait shifts from opportunists to specialists, generating further questions about the selective forces driving specialization.more » « less
An official website of the United States government
