- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0001000002000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Ceron, Steven (2)
-
Nilles, Alexandra (2)
-
Petersen, Kirstin (2)
-
Goldman, Daniel I. (1)
-
Huang, Luyang Robby (1)
-
Kimmel, Marta An (1)
-
Napp, Nils (1)
-
Petersen, Kirstin H. (1)
-
Ruina, Andy (1)
-
Wang, Kathleen (1)
-
Zhu, Alexander (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Soft robots actuate themselves and their world through induced pressure and strain, and can often sense these quantities as well. We hypothesize that coordination in a tightly coupled collective of soft robots can be achieved with purely proprioceptive sensing and no direct communication. In this paper, we target a platform of soft pneumatic modules capable of sensing strain on their perimeter, with the goal of using only the robots' own soft actuators and sensors as a medium for distributed coordination. However, methods for modelling, sensing, and controlling strain in such soft robot collectives are not well understood. To address this challenge, we introduce and validate a computationally efficient spring-based model for two-dimensional sheets of soft pneumatic robots. We then translate a classical consensus algorithm to use only proprioceptive data, test in simulation, and show that due to the physical coupling between robots we can achieve consensus-like coordination. We discuss the unique challenges of strain sensors and next steps to bringing these findings to hardware. These findings have promising potential for smart materials and large-scale collectives, because they omit the need for additional communication infrastructure to support coordination.more » « less
-
Huang, Luyang Robby; Zhu, Alexander; Wang, Kathleen; Goldman, Daniel I.; Ruina, Andy; Petersen, Kirstin H. (, IEEE Robotics and Automation Letters)
-
Ceron, Steven; Kimmel, Marta An; Nilles, Alexandra; Petersen, Kirstin (, IEEE Robotics and Automation Letters)
An official website of the United States government
