skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1934650

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Purpose of ReviewThe current review aims to address critical gaps in the field of stroke rehabilitation related to sensory impairment. Here, we examine the role and importance of sensation throughout recovery of neural injury, potential clinical and experimental approaches for improving sensory function, and mechanism-based theories that may facilitate the design of sensory-based approaches for the rehabilitation of somatosensation. Recent FindingsRecently, the field of neurorehabilitation has shifted to using more quantitative and sensitive measures to more accurately capture sensory function in stroke and other neurological populations. These approaches have laid the groundwork for understanding how sensory impairments impact overall function after stroke. However, there is less consensus on which interventions are effective for remediating sensory function, with approaches that vary from clinical re-training, robotics, and sensory stimulation interventions. SummaryCurrent evidence has found that sensory and motor systems are interdependent, but commonly have independent recovery trajectories after stroke. Therefore, it is imperative to assess somatosensory function in order to guide rehabilitation outcomes and trajectory. Overall, considerable work in the field still remains, as there is limited evidence for purported mechanisms of sensory recovery, promising early-stage work that focuses on sensory training, and a considerable evidence-practice gap related to clinical sensory rehabilitation. 
    more » « less
  2. Abstract BackgroundPrevious work has shown that ~ 50–60% of individuals have impaired proprioception after stroke. Typically, these studies have identified proprioceptive impairments using a narrow range of reference movements. While this has been important for identifying the prevalence of proprioceptive impairments, it is unknown whether these error responses are consistent for a broad range of reference movements. The objective of this study was to characterize proprioceptive accuracy as function of movement speed and distance in stroke. MethodsStroke (N = 25) and controls (N = 21) completed a robotic proprioception test that varied movement speed and distance. Participants mirror-matched various reference movement speeds (0.1–0.4 m/s) and distances (7.5–17.5 cm). Spatial and temporal parameters known to quantify proprioception were used to determine group differences in proprioceptive accuracy, and whether patterns of proprioceptive error were consistent across testing conditions within and across groups. ResultsOverall, we found that stroke participants had impaired proprioception compared to controls. Proprioceptive errors related to tested reference movement scaled similarly to controls, but some errors showed amplified scaling (e.g., significantly overshooting or undershooting reference speed). Further, interaction effects were present for speed and distance reference combinations at the extremes of the testing distribution. ConclusionsWe found that stroke participants have impaired proprioception and that some proprioceptive errors were dependent on characteristics of the movement (e.g., speed) and that reference movements at the extremes of the testing distribution resulted in significantly larger proprioceptive errors for the stroke group. Understanding how sensory information is utilized across a broad spectrum of movements after stroke may aid design of rehabilitation programs. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  3. BackgroundUpper limb proprioceptive impairments are common after stroke and affect daily function. Recent work has shown that stroke survivors have difficulty using visual information to improve proprioception. It is unclear how eye movements are impacted to guide action of the arm after stroke. Here, we aimed to understand how upper limb proprioceptive impairments impact eye movements in individuals with stroke. MethodsControl (N = 20) and stroke participants (N = 20) performed a proprioceptive matching task with upper limb and eye movements. A KINARM exoskeleton with eye tracking was used to assess limb and eye kinematics. The upper limb was passively moved by the robot and participants matched the location with either an arm or eye movement. Accuracy was measured as the difference between passive robot movement location and active limb matching (Hand-End Point Error) or active eye movement matching (Eye-End Point Error). ResultsWe found that individuals with stroke had significantly larger Hand (2.1×) and Eye-End Point (1.5×) Errors compared to controls. Further, we found that proprioceptive errors of the hand and eye were highly correlated in stroke participants ( r = .67, P = .001), a relationship not observed for controls. ConclusionsEye movement accuracy declined as a function of proprioceptive impairment of the more-affected limb, which was used as a proprioceptive reference. The inability to use proprioceptive information of the arm to coordinate eye movements suggests that disordered proprioception impacts integration of sensory information across different modalities. These results have important implications for how vision is used to actively guide limb movement during rehabilitation. 
    more » « less
  4. Lee, YunJu (Ed.)
    BackgroundWhile many factors are associated with stepping activity after stroke, there is significant variability across studies. One potential reason to explain this variability is that there are certain characteristics that arenecessaryto achieve greater stepping activity that differ from others thatmayneed to be targeted to improve stepping activity. ObjectiveUsing two step thresholds (2500 steps/day, corresponding to home vs. community ambulation and 5500 steps/day, corresponding to achieving physical activity guidelines through walking), we applied 3 different algorithms to determine which predictors are most important to achieve these thresholds. MethodsWe analyzed data from 268 participants with stroke that included 25 demographic, performance-based and self-report variables. Step 1 of our analysis involved dimensionality reduction using lasso regularization. Step 2 applied drop column feature importance to compute the mean importance of each variable. We then assessed which predictors were important to all 3 mathematically unique algorithms. ResultsThe number of relevant predictors was reduced from 25 to 7 for home vs. community and from 25 to 16 for aerobic thresholds. Drop column feature importance revealed that 6 Minute Walk Test and speed modulation were the only variables found to be important to all 3 algorithms (primary characteristics)for each respective threshold. Other variables related to readiness to change activity behavior and physical health, among others, were found to be important to one or two algorithms (ancillary characteristics). ConclusionsAddressing physical capacity isnecessary but not sufficientto achieve important step thresholds, asancillary characteristics, such as readiness to change activity behavior and physical health may also need to be targeted. This delineation may explain heterogeneity across studies examining predictors of stepping activity in stroke. 
    more » « less
  5. Previous work has identified age-related declines in proprioception within a narrow range of limb movements. It is unclear whether these declines are consistent across a broad range of movement characteristics that more closely represent daily living. Here we aim to characterize upper limb error in younger and older adults across a range of movement speeds and distances. The objective of this study was to determine how proprioceptive matching accuracy changes as a function of movement speed and distance, as well as understand the effects of aging on these accuracies. We used an upper limb robotic test of proprioception to vary the speed and distance of movement in two groups: younger (n = 20, 24.25 ± 3.34 years) and older adults (n = 21, 63 ± 10.74 years). The robot moved one arm and the participant was instructed to mirror-match the movement with their opposite arm. Participants matched seven different movement speeds (0.1–0.4 m/s) and five distances (7.5–17.5 cm) over 350 trials. Spatial (e.g., End Point Error) and temporal (e.g., Peak Speed Ratio) outcomes were used to quantify proprioceptive accuracy. Regardless of the speed or distance of movement, we found that older controls had significantly reduced proprioceptive matching accuracy compared to younger control participants (p ≤ 0.05). When movement speed was varied, we observed that errors in proprioceptive matching estimates of spatial and temporal measures were significantly higher for older adults for all but the slowest tested speed (0.1 m/s) for the majority of parameters. When movement distance was varied, we observed that errors in proprioceptive matching estimates were significantly higher for all distances, except for the longest distance (17.5 cm) for older adults compared to younger adults. We found that the magnitude of proprioceptive matching errors was dependent on the characteristics of the reference movement, and that these errors scaled increasingly with age. Our results suggest that aging significantly negatively impacts proprioceptive matching accuracy and that proprioceptive matching errors made by both groups lies along a continuum that depends on movement characteristics and that these errors are amplified due to the typical aging process. 
    more » « less
  6. Gail, Alexander (Ed.)
    The motor system demonstrates an exquisite ability to adapt to changes in the environment and to quickly reset when these changes prove transient. If similar environmental changes are encountered in the future, learning may be faster, a phenomenon known as savings. In studies of sensorimotor learning, a central component of savings is attributed to the explicit recall of the task structure and appropriate compensatory strategies. Whether implicit adaptation also contributes to savings remains subject to debate. We tackled this question by measuring, in parallel, explicit and implicit adaptive responses in a visuomotor rotation task, employing a protocol that typically elicits savings. While the initial rate of learning was faster in the second exposure to the perturbation, an analysis decomposing the 2 processes showed the benefit to be solely associated with explicit re-aiming. Surprisingly, we found a significant decrease after relearning in aftereffect magnitudes during no-feedback trials, a direct measure of implicit adaptation. In a second experiment, we isolated implicit adaptation using clamped visual feedback, a method known to eliminate the contribution of explicit learning processes. Consistent with the results of the first experiment, participants exhibited a marked reduction in the adaptation function, as well as an attenuated aftereffect when relearning from the clamped feedback. Motivated by these results, we reanalyzed data from prior studies and observed a consistent, yet unappreciated pattern of attenuation of implicit adaptation during relearning. These results indicate that explicit and implicit sensorimotor processes exhibit opposite effects upon relearning: Explicit learning shows savings, while implicit adaptation becomes attenuated 
    more » « less
  7. Recent studies have demonstrated that task success signals can modulate learning during sensorimotor adaptation tasks, primarily through engaging explicit processes. Here, we examine the influence of task outcome on implicit adaptation, using a reaching task in which adaptation is induced by feedback that is not contingent on actual performance. We imposed an invariant perturbation (rotation) on the feedback cursor while varying the target size. In this way, the cursor either hit or missed the target, with the former producing a marked attenuation of implicit motor learning. We explored different computational architectures that might account for how task outcome information interacts with implicit adaptation. The results fail to support an architecture in which adaptation operates in parallel with a model-free operant reinforcement process. Rather, task outcome may serve as a gain on implicit adaptation or provide a distinct error signal for a second, independent implicit learning process. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter). 
    more » « less