skip to main content

Search for: All records

Award ID contains: 1934714

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Simulations of nuclear magnetic resonance (NMR) experiments can be an important tool for extracting information about molecular structure and optimizing experimental protocols but are often intractable on classical computers for large molecules such as proteins and for protocols such as zero-field NMR. We demonstrate the first quantum simulation of an NMR spectrum, computing the zero-field spectrum of the methyl group of acetonitrile using four qubits of a trapped-ion quantum computer. We reduce the sampling cost of the quantum simulation by an order of magnitude using compressed sensing techniques. We show how the intrinsic decoherence of NMR systems may enable the zero-field simulation of classically hard molecules on relatively near-term quantum hardware and discuss how the experimentally demonstrated quantum algorithm can be used to efficiently simulate scientifically and technologically relevant solid-state NMR experiments on more mature devices. Our work opens a practical application for quantum computation.

    more » « less
    Free, publicly-accessible full text available November 15, 2024
  2. The information content of crystalline materials becomes astronomical when collective electronic behavior and their fluctuations are taken into account. In the past decade, improvements in source brightness and detector technology at modern X-ray facilities have allowed a dramatically increased fraction of this information to be captured. Now, the primary challenge is to understand and discover scientific principles from big datasets when a comprehensive analysis is beyond human reach. We report the development of an unsupervised machine learning approach, X-ray diffraction (XRD) temperature clustering (X-TEC), that can automatically extract charge density wave order parameters and detect intraunit cell ordering and its fluctuations from a series of high-volume X-ray diffraction measurements taken at multiple temperatures. We benchmark X-TEC with diffraction data on a quasi-skutterudite family of materials, (Ca x Sr 1 − x ) 3 Rh 4 Sn 13 , where a quantum critical point is observed as a function of Ca concentration. We apply X-TEC to XRD data on the pyrochlore metal, Cd 2 Re 2 O 7 , to investigate its two much-debated structural phase transitions and uncover the Goldstone mode accompanying them. We demonstrate how unprecedented atomic-scale knowledge can be gained when human researchers connect the X-TEC results to physical principles. Specifically, we extract from the X-TEC–revealed selection rules that the Cd and Re displacements are approximately equal in amplitude but out of phase. This discovery reveals a previously unknown involvement of 5 d 2 Re, supporting the idea of an electronic origin to the structural order. Our approach can radically transform XRD experiments by allowing in operando data analysis and enabling researchers to refine experiments by discovering interesting regions of phase space on the fly. 
    more » « less
  3. Variational approaches are among the most powerful techniques toapproximately solve quantum many-body problems. These encompass bothvariational states based on tensor or neural networks, and parameterizedquantum circuits in variational quantum eigensolvers. However,self-consistent evaluation of the quality of variational wavefunctionsis a notoriously hard task. Using a recently developed Hamiltonianreconstruction method, we propose a multi-faceted approach to evaluatingthe quality of neural-network based wavefunctions. Specifically, weconsider convolutional neural network (CNN) and restricted Boltzmannmachine (RBM) states trained on a square latticespin-1/21/2J_1\!-\!J_2J1J2Heisenberg model. We find that the reconstructed Hamiltonians aretypically less frustrated, and have easy-axis anisotropy near the highfrustration point. In addition, the reconstructed Hamiltonians suppressquantum fluctuations in the largeJ_2J2limit. Our results highlight the critical importance of thewavefunction’s symmetry. Moreover, the multi-faceted insight from theHamiltonian reconstruction reveals that a variational wave function canfail to capture the true ground state through suppression of quantumfluctuations.

    more » « less
  4. null (Ed.)
    Abstract Image-like data from quantum systems promises to offer greater insight into the physics of correlated quantum matter. However, the traditional framework of condensed matter physics lacks principled approaches for analyzing such data. Machine learning models are a powerful theoretical tool for analyzing image-like data including many-body snapshots from quantum simulators. Recently, they have successfully distinguished between simulated snapshots that are indistinguishable from one and two point correlation functions. Thus far, the complexity of these models has inhibited new physical insights from such approaches. Here, we develop a set of nonlinearities for use in a neural network architecture that discovers features in the data which are directly interpretable in terms of physical observables. Applied to simulated snapshots produced by two candidate theories approximating the doped Fermi-Hubbard model, we uncover that the key distinguishing features are fourth-order spin-charge correlators. Our approach lends itself well to the construction of simple, versatile, end-to-end interpretable architectures, thus paving the way for new physical insights from machine learning studies of experimental and numerical data. 
    more » « less
  5. Abstract With rapid progress across platforms for quantum systems, the problem of many-body quantum state reconstruction for noisy quantum states becomes an important challenge. There has been a growing interest in approaching the problem of quantum state reconstruction using generative neural network models. Here we propose the ‘attention-based quantum tomography’ (AQT), a quantum state reconstruction using an attention mechanism-based generative network that learns the mixed state density matrix of a noisy quantum state. AQT is based on the model proposed in ‘Attention is all you need’ by Vaswani et al (2017 NIPS ) that is designed to learn long-range correlations in natural language sentences and thereby outperform previous natural language processing (NLP) models. We demonstrate not only that AQT outperforms earlier neural-network-based quantum state reconstruction on identical tasks but that AQT can accurately reconstruct the density matrix associated with a noisy quantum state experimentally realized in an IBMQ quantum computer. We speculate the success of the AQT stems from its ability to model quantum entanglement across the entire quantum system much as the attention model for NLP captures the correlations among words in a sentence. 
    more » « less