skip to main content


Search for: All records

Award ID contains: 1934968

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Understanding neural function often requires multiple modalities of data, including electrophysiogical data, imaging techniques, and demographic surveys. In this paper, we introduce a novel neurophysiological model to tackle major challenges in modeling multimodal data. First, we avoid non-alignment issues between raw signals and extracted, frequency-domain features by addressing the issue of variable sampling rates. Second, we encode modalities through “cross-attention” with other modalities. Lastly, we utilize properties of our parent transformer architecture to model long-range dependencies between segments across modalities and assess intermediary weights to better understand how source signals affect prediction. We apply our Multimodal Neurophysiological Transformer (MNT) to predict valence and arousal in an existing open-source dataset. Experiments on non-aligned multimodal time-series show that our model performs similarly and, in some cases, outperforms existing methods in classification tasks. In addition, qualitative analysis suggests that MNT is able to model neural influences on autonomic activity in predicting arousal. Our architecture has the potential to be fine-tuned to a variety of downstream tasks, including for BCI systems. 
    more » « less
  2. Assessing and tracking physiological and cognitive states of multiple individuals interacting in virtual environments is of increasing interest to the virtual reality (VR) community. In this paper, we describe a team-based VR task termed the Apollo Distributed Control Task (ADCT), where individuals, via the single independent degree-of-freedom control and limited environmental views, must work together to guide a virtual spacecraft back to Earth. Novel to the experiment is that 1) we simultaneously collect multiple physiological measures including electroencephalography (EEG), pupillometry, speech signals, and individual's actions, 2) we regulate the the difficulty of the task and the type of communication between the teammates. Focusing on the analysis of pupil dynamics, which have been linked to a number of cognitive and physiological processes such as arousal, cognitive control, and working memory, we find that pupil diameter changes are predictive of multiple task-related dimensions, including the difficulty of the task, the role of the team member, and the type of communication. 
    more » « less