Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract As the name indicates, a periodic orbit is a solution for a dynamical system that repeats itself in time. In the regular regime, periodic orbits are stable, while in the chaotic regime, they become unstable. The presence of unstable periodic orbits is directly associated with the phenomenon of quantum scarring, which restricts the degree of delocalization of the eigenstates and leads to revivals in the dynamics. Here, we study the Dicke model in the superradiant phase and identify two sets of fundamental periodic orbits. This experimentally realizable atom–photon model is regular at low energies and chaotic at high energies. We study the effects of the periodic orbits in the structure of the eigenstates in both regular and chaotic regimes and obtain their quantized energies. We also introduce a measure to quantify how much scarred an eigenstate gets by each family of periodic orbits and compare the dynamics of initial coherent states close and away from those orbits.more » « less
-
Abstract Transmon qubits are the predominant element in circuit-based quantum information processing, such as existing quantum computers, due to their controllability and ease of engineering implementation. But more than qubits, transmons are multilevel nonlinear oscillators that can be used to investigate fundamental physics questions. Here, they are explored as simulators of excited state quantum phase transitions (ESQPTs), which are generalizations of quantum phase transitions to excited states. We show that the spectral kissing (coalescence of pairs of energy levels) experimentally observed in the effective Hamiltonian of a driven SNAIL-transmon is an ESQPT precursor. We explore the dynamical consequences of the ESQPT, which include the exponential growth of out-of-time-ordered correlators, followed by periodic revivals, and the slow evolution of the survival probability due to localization. These signatures of ESQPT are within reach for current superconducting circuits platforms and are of interest to experiments with cold atoms and ion traps.more » « less
-
Survival probability measures the probability that a system taken out of equilibrium has not yet transitioned from its initial state. Inspired by the generalized entropies used to analyze nonergodic states, we introduce a generalized version of the survival probability and discuss how it can assist in studies of the structure of eigenstates and ergodicity.more » « less
-
We study the chaotic properties of a large-spin XXZ chain with onsite disorder and a small number of excitations above the fully polarized state. We show that while the classical limit, which is reached for large spins, is chaotic, enlarging the spin suppresses quantum chaos features. We examine ways to facilitate chaos by introducing additional terms to the Hamiltonian. Interestingly, perturbations that are diagonal in the basis of product states in the z-direction do not lead to significant enhancement of chaos, while off-diagonal perturbations restore chaoticity for large spins, so that only three excitations are required to achieve strong level repulsion and ergodic eigenstates.more » « less
An official website of the United States government
