skip to main content


Search for: All records

Award ID contains: 1936195

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Aim

    Roots and rhizospheres host diverse microbial communities that can influence the fitness, phenotypes, and environmental tolerances of plants. Documenting the biogeography of these microbiomes can detect the potential for a changing environment to disrupt host‐microbe interactions, particularly in cases where microbes buffer hosts against abiotic stressors. We evaluated whether root‐associated fungi had poleward declines in diversity, tested whether fungal communities in roots shifted near host plant range edges, and determined the relative importance of environmental and host predictors of root fungal community structure.

    Location

    North American plains grasslands.

    Taxon

    Foundation grasses –Andropogon gerardii, Bouteloua dactyloides, B. eriopoda, B. gracilis,andSchizachyrium scopariumand root fungi.

    Methods

    At each of 24 sites representing three replicate 17°–latitudinal gradients, we collected roots from 12 individuals per species along five transects spaced 10 m apart (40 m × 40 m grid). We used next‐generation sequencing of ITS2, direct fungal culturing from roots, and microscopy to survey fungi associated with grass roots.

    Results

    Root‐associated fungi did not follow the poleward declines in diversity documented for many animals and plants. Instead, host plant identity had the largest influence on fungal community structure. Edaphic factors outranked climate or host plant traits as correlates of fungal community structure; however, the relative importance of environmental predictors differed among plant species. As sampling approached host species range edges, fungal composition converged in similarity among individual plants of each grass species.

    Main conclusions

    Environmental predictors of root‐associated fungi depended strongly on host plant species identity. Biogeographic patterns in fungal composition suggested a homogenizing influence of stressors at host plant range limits. Results predict that communities of non‐mycorrhizal, root‐associated fungi in the North American plains will be more sensitive to future changes in host plant ranges and edaphic factors than to the direct effects of climate.

     
    more » « less
  2. Abstract

    Fungal symbionts can buffer plants from environmental extremes and may affect host capacities to acclimate, adapt, or redistribute under environmental change; however, the distributions of fungal symbionts along abiotic gradients are poorly described. Fungal mutualists should be the most beneficial in abiotically stressful environments, and the structure of networks of plant-fungal interactions likely shift along gradients, even when fungal community composition does not track environmental stress. We sampled 634 unique combinations of fungal endophytes and mycorrhizal fungi, grass species identities, and sampling locations from 66 sites across six replicate altitudinal gradients in the western Colorado Rocky Mountains. The diversity and composition of leaf endophytic, root endophytic, and arbuscular mycorrhizal (AM) fungal guilds and the overall abundance of fungal functional groups (pathogens, saprotrophs, mutualists) tracked grass host identity more closely than elevation. Network structures of root endophytes become more nested and less specialized at higher elevations, but network structures of other fungal guilds did not vary with elevation. Overall, grass species identity had overriding influence on the diversity and composition of above- and belowground fungal endophytes and AM fungi, despite large environmental variation. Therefore, in our system climate change may rarely directly affect fungal symbionts. Instead, fungal symbiont distributions will most likely track the range dynamics of host grasses.

     
    more » « less
  3. Summary

    First principles predict that diversity at one trophic level often begets diversity at other levels, suggesting plant and mycorrhizal fungal diversity should be coupled. Local‐scale studies have shown positive coupling between the two, but the association is less consistent when extended to larger spatial and temporal scales. These inconsistencies are likely due to divergent relationships of different mycorrhizal fungal guilds to plant diversity, scale dependency, and a lack of coordinated sampling efforts. Given that mycorrhizal fungi play a central role in plant productivity and nutrient cycling, as well as ecosystem responses to global change, an improved understanding of the coupling between plant and mycorrhizal fungal diversity across scales will reduce uncertainties in predicting the ecosystem consequences of species gains and losses.

     
    more » « less
  4. Abstract

    Patterns of insect herbivory may follow predictable geographical gradients, with greater herbivory at low latitudes. However, biogeographic studies of insect herbivory often do not account for multiple abiotic factors (e.g., precipitation and soil nutrients) that could underlie gradients. We tested for latitudinal clines in insect herbivory as well as climatic, edaphic, and trait‐based drivers of herbivory. We quantified herbivory on five dominant grass species over 23 sites across the Great Plains, USA. We examined the importance of climate, edaphic factors, and traits as correlates of herbivory. Herbivory increased at low latitudes when all grass species were analyzed together and for two grass species individually, while two other grasses trended in this direction. Higher precipitation was related to more herbivory for two species but less herbivory for a different species, while higher specific root length was related to more herbivory for one species and less herbivory for a different species. Taken together, results highlight that climate and trait‐based correlates of herbivory can be highly contextual and species‐specific. Patterns of insect herbivory on dominant grasses support the hypothesis that herbivory increases toward lower latitudes, though weakly, and indicates that climate change may have species‐specific effects on plant–herbivore interactions.

     
    more » « less
  5. null (Ed.)
    Synopsis Global environmental changes induced by human activities are forcing organisms to respond at an unprecedented pace. At present we have only a limited understanding of why some species possess the capacity to respond to these changes while others do not. We introduce the concept of multidimensional phenospace as an organizing construct to understanding organismal evolutionary responses to environmental change. We then describe five barriers that currently challenge our ability to understand these responses: (1) Understanding the parameters of environmental change and their fitness effects, (2) Mapping and integrating phenotypic and genotypic variation, (3) Understanding whether changes in phenospace are heritable, (4) Predicting consistency of genotype to phenotype patterns across space and time, and (5) Determining which traits should be prioritized to understand organismal response to environmental change. For each we suggest one or more solutions that would help us surmount the barrier and improve our ability to predict, and eventually manipulate, organismal capacity to respond to anthropogenic change. Additionally, we provide examples of target species that could be useful to examine interactions between phenotypic plasticity and adaptive evolution in changing phenospace. 
    more » « less
  6. This article is a Commentary onDavisonet al. (2021),231: 763–776.

     
    more » « less
  7. null (Ed.)
  8. null (Ed.)
    Macroecological rules have been developed for plants and animals that describe large-scale distributional patterns and attempt to explain the underlying physiological and ecological processes behind them. Similarly, microorganisms exhibit patterns in relative abundance, distribution, diversity, and traits across space and time, yet it remains unclear the extent to which microorganisms follow macroecological rules initially developed for macroorganisms. Additionally, the usefulness of these rules as a null hypothesis when surveying microorganisms has yet to be fully evaluated. With rapid advancements in sequencing technology, we have seen a recent increase in microbial studies that utilize macroecological frameworks. Here, we review and synthesize these macroecological microbial studies with two main objectives: (1) to determine to what extent macroecological rules explain the distribution of host-associated and free-living microorganisms, and (2) to understand which environmental factors and stochastic processes may explain these patterns among microbial clades (archaea, bacteria, fungi, and protists) and habitats (host-associated and free living; terrestrial and aquatic). Overall, 78% of microbial macroecology studies focused on free living, aquatic organisms. In addition, most studies examined macroecological rules at the community level with only 35% of studies surveying organismal patterns across space. At the community level microorganisms often tracked patterns of macroorganisms for island biogeography (74% confirm) but rarely followed Latitudinal Diversity Gradients (LDGs) of macroorganisms (only 32% confirm). However, when microorganisms and macroorganisms shared the same macroecological patterns, underlying environmental drivers (e.g., temperature) were the same. Because we found a lack of studies for many microbial groups and habitats, we conclude our review by outlining several outstanding questions and creating recommendations for future studies in microbial ecology. 
    more » « less
  9. null (Ed.)