skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1936223

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Lead halide perovskite (LHP) nanocrystals (NCs) have recently garnered enhanced development efforts from research disciplines owing to their superior optical and optoelectronic properties. These materials, however, are unlike conventional quantum dots, because they possess strong ionic character, labile ligand coverage, and overall stability issues. As a result, the system as a whole is highly dynamic and can be affected by slight changes of particle surface environment. Specifically, the surface ligand shell of LHP NCs has proven to play imperative roles throughout the lifetime of a LHP NC. Recent advances in engineering and understanding the roles of surface ligand shells from initial synthesis, through postsynthetic processing and device integration, finally to application performances of colloidal LHP NCs are covered here. 
    more » « less
  2. Abstract A colloidal‐amphiphile‐templated growth is developed to synthesize mesoporous complex oxides with highly crystalline frameworks. Organosilane‐containing colloidal templates can convert into thermally stable silica that prevents the overgrowth of crystalline grains and the collapse of the mesoporosity. Using ilmenite CoTiO3as an example, the high crystallinity and the extraordinary thermal stability of its mesoporosity are demonstrated at 800 °C for 48 h under air. This synthetic approach is general and applicable to a series of complex oxides that are not reported with mesoporosity and high crystallinity, such as NiTiO3, FeTiO3, ZnTiO3, Co2TiO4, Zn2TiO4, MgTi2O5, and FeTi2O5. Those novel materials make it possible to build up correlations between mesoscale porosity and surface‐sensitive physicochemical properties, e.g., electromagnetic response. For mesoporous CoTiO3, there is a 3 K increase of its antiferromagnetic ordering temperature, compared with that of nonporous one. This finding provides a general guideline to design mesoporous complex oxides that allow exploring their unique properties different from bulk materials. 
    more » « less