skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1936314

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Controlling large-scale many-body quantum systems at the level of single photons and single atomic systems is a central goal in quantum information science and technology. Intensive research and development has propelled foundry-based silicon-on-insulator photonic integrated circuits to a leading platform for large-scale optical control with individual mode programmability. However, integrating atomic quantum systems with single-emitter tunability remains an open challenge. Here, we overcome this barrier through the hybrid integration of multiple InAs/InP microchiplets containing high-brightness infrared semiconductor quantum dot single photon emitters into advanced silicon-on-insulator photonic integrated circuits fabricated in a 300 mm foundry process. With this platform, we achieve single-photon emission via resonance fluorescence and scalable emission wavelength tunability. The combined control of photonic and quantum systems opens the door to programmable quantum information processors manufactured in leading semiconductor foundries. 
    more » « less
  2. Photonics provide an efficient way to implement quantum walks, the quantum analog of classical random walks, which demonstrate rich physics with potential applications. However, most photonic quantum walks do not involve photon interactions, which limits their potential to explore strongly correlated many-body physics of light. We propose a strongly interacting discrete-time photonic quantum walk using a network of single atom beamsplitters. We calculate output statistics of the quantum walk for the case of two photons, which reveals the strongly correlated transport of photons. Particularly, the walk can exhibit either bosonlike or fermionlike statistics which is tunable by postselecting the two-photon detection time interval. Also, the walk can sort different types of two-photon bound states into distinct pairs of output ports under certain conditions. These unique phenomena show that our quantum walk is an intriguing platform to explore strongly correlated quantum many-body states of light. Finally, we propose an experimental realization based on time-multiplexed synthetic dimensions. 
    more » « less
  3. Directing indistinguishable photons from one input port into separate output ports is a fundamental operation in quantum information processing. The simplest scheme for achieving routing beyond random chance uses the photon blockade effect of a two-level emitter. But this approach is limited by a time-energy uncertainty relation. We show that a linear optical unitary transformation applied after the atom enables splitting efficiencies that exceed this time-energy limit. We show that the linear optical unitary improves the splitting efficiency from 67% to 82% for unentangled photon inputs, and from 77% to 90% for entangled photon inputs. We then optimize the temporal mode profile of the entangled photon wave function to attain the optimal splitting efficiency of 92%, a significant improvement over previous limits derived using a two-level atom alone. These results provide a path towards optimizing single photon nonlinearities and engineering programmable and robust photon-photon interactions for practical, high-fidelity quantum operations. 
    more » « less
  4. One-time AI training procedure enables exact model deployment onto arbitrary highly faulty analog hardware without retraining. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)