skip to main content


Search for: All records

Award ID contains: 1936671

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Groundwater discharge from high tropical islands can have a significant influence on the biochemistry of reef ecosystems. Recent studies have suggested that a portion of groundwater may underflow the reefs to be discharged, either through the reef flat or toward the periphery of the reef system. Understanding of this potential discharge process is limited by the characterization of subsurface reef structures in these environments. A geophysical method was used in this study to profile the reef surrounding the high volcanic island of Mo’orea, French Polynesia. Boat-towed continuous resistivity profiling (CRP) revealed electrically resistive features at about 10–15 m depth, ranging in width from 30 to 200 m. These features were repeatable in duplicate survey lines, but resolution was limited by current-channeling through the seawater column. Anomalous resistivity could represent the occurrence of freshened porewater confined within the reef, but a change in porosity due to secondary cementation cannot be ruled out. Groundwater-freshened reef porewater has been observed near-shore on Mo’orea and suggested elsewhere using similar geophysical surveys, but synthetic models conducted as part of this study demonstrate that CRP alone is insufficient to draw these conclusions. These CRP surveys suggest reefs surrounding high islands may harbor pathways for terrestrial groundwater flow, but invasive sampling is required to demonstrate the role of groundwater in terrestrial runoff.

     
    more » « less
    Free, publicly-accessible full text available November 1, 2024
  2. Quantifying the freshwater component of submarine groundwater discharge (SGD) is critical in the analysis of terrestrial influences on marine ecosystems and in assessing the water budget and groundwater recharge of coastal aquifers. In semi-arid to arid settings, this quantification is difficult because low SGD rates translate into low concentrations of groundwater solutes in coastal waters. In this study, fresh SGD (FSGD) was quantified for Toyon Bay on Catalina Island, California, for wet and dry seasons using a combination of radon and salinity mass balance models, and the results were compared to watershed-specific groundwater recharge rates obtained from soil water balance (SWB) modeling. Calculated FSGD rates vary only slightly with season and are remarkably similar to the recharge estimates from the SWB model. While sensitivity analyses revealed FSGD estimates to be significantly influenced by uncertainties in geochemical variability of the groundwater end-member and fluctuations of water depth, the results of this study support the SWB-model-based recharge rates. The findings of this study highlight the utility of the radon-and-salinity-mass-balance-based FSGD estimates as groundwater recharge calibration targets, which may aid in establishing more refined sustainable groundwater yields. 
    more » « less
  3. null (Ed.)
    Documenting how ground- and surface water systems respond to climate change is crucial to understanding water resources, particularly in the U.S. Great Lakes region, where drastic temperature and precipitation changes are observed. This study presents baseflow and baseflow index (BFI) trend analyses for 10 undisturbed watersheds in Michigan using (1) multi-objective optimization (MOO) and (2) modified Mann–Kendall (MK) tests corrected for short-term autocorrelation (STA). Results indicate a variability in mean baseflow (0.09–8.70 m3/s) and BFI (67.9–89.7%) that complicates regional-scale extrapolations of groundwater recharge. Long-term (>60 years) MK trend tests indicate a significant control of total precipitation (P) and snow- to rainfall transitions on baseflow and BFI. In the Lower Peninsula Rifle River watershed, increasing P and a transition from snow- to rainfall has increased baseflow at a lower rate than streamflow; an overall pattern that may contribute to documented flood frequency increases. In the Upper Peninsula Ford River watershed, decreasing P and a transition from rain- to snowfall had no significant effects on baseflow and BFI. Our results highlight the value of an objectively constrained BFI parameter for shorter-term (<50 years) hydrologic trend analysis because of a lower STA susceptibility. 
    more » « less