skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1936791

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. BackgroundThe advancement of sequencing technology has led to a rapid increase in the amount of DNA and protein sequence data; consequently, the size of genomic and proteomic databases is constantly growing. As a result, database searches need to be continually updated to account for the new data being added. However, continually re-searching the entire existing dataset wastes resources. Incremental database search can address this problem. MethodsOne recently introduced incremental search method is iBlast, which wraps the BLAST sequence search method with an algorithm to reuse previously processed data and thereby increase search efficiency. The iBlast wrapper, however, must be generalized to support better performing DNA/protein sequence search methods that have been developed, namely MMseqs2 and Diamond. To address this need, we propose iSeqsSearch, which extends iBlast by incorporating support for MMseqs2 (iMMseqs2) and Diamond (iDiamond), thereby providing a more generalized and broadly effective incremental search framework. Moreover, the previously published iBlast wrapper has to be revised to be more robust and usable by the general community. ResultsiMMseqs2 and iDiamond, which apply the incremental approach, perform nearly identical to MMseqs2 and Diamond. Notably, when comparing ranking comparison methods such as the Pearson correlation, we observe a high concordance of over 0.9, indicating similar results. Moreover, in some cases, our incremental approach, iSeqsSearch, which extends the iBlast merge function to iMMseqs2 and iDiamond, provides more hits compared to the conventional MMseqs2 and Diamond methods. ConclusionThe incremental approach using iMMseqs2 and iDiamond demonstrates efficiency in terms of reusing previously processed data while maintaining high accuracy and concordance in search results. This method can reduce resource waste in continually growing genomic and proteomic database searches. The sample codes and data are available at GitHub and Zenodo (https://github.com/EESI/Incremental-Protein-Search; DOI:10.5281/zenodo.14675319). 
    more » « less
    Free, publicly-accessible full text available April 28, 2026
  2. Abstract MotivationThis study examines the query performance of the NBC++ (Incremental Naive Bayes Classifier) program for variations in canonicality, k-mer size, databases, and input sample data size. We demonstrate that both NBC++ and Kraken2 are influenced by database depth, with macro measures improving as depth increases. However, fully capturing the diversity of life, especially viruses, remains a challenge. ResultsNBC++ can competitively profile the superkingdom content of metagenomic samples using a small training database. NBC++ spends less time training and can use a fraction of the memory than Kraken2 but at the cost of long querying time. Major NBC++ enhancements include accommodating canonical k-mer storage (leading to significant storage savings) and adaptable and optimized memory allocation that accelerates query analysis and enables the software to be run on nearly any system. Additionally, the output now includes log-likelihood values for each training genome, providing users with valuable confidence information. Availability and implementationSource code and Dockerfile are available at http://github.com/EESI/Naive_Bayes. 
    more » « less
  3. Abstract MotivationThe analysis of mutational signatures is becoming increasingly common in cancer genetics, with emerging implications in cancer evolution, classification, treatment decision and prognosis. Recently, several packages have been developed for mutational signature analysis, with each using different methodology and yielding significantly different results. Because of the non-trivial differences in tools’ refitting results, researchers may desire to survey and compare the available tools, in order to objectively evaluate the results for their specific research question, such as which mutational signatures are prevalent in different cancer types. ResultsDue to the need for effective comparison of refitting mutational signatures, we introduce a user-friendly software that can aggregate and visually present results from different refitting packages. Availability and implementationMetaMutationalSigs is implemented using R and python and is available for installation using Docker and available at: https://github.com/EESI/MetaMutationalSigs. 
    more » « less
  4. Abstract While genome sequencing has expanded our knowledge of symbiosis, role assignment within multi-species microbiomes remains challenging due to genomic redundancy and the uncertainties of in vivo impacts. We address such questions, here, for a specialized nitrogen (N) recycling microbiome of turtle ants, describing a new genus and species of gut symbiont—Ischyrobacter davidsoniae (Betaproteobacteria: Burkholderiales: Alcaligenaceae)—and its in vivo physiological context. A re-analysis of amplicon sequencing data, with precisely assigned Ischyrobacter reads, revealed a seemingly ubiquitous distribution across the turtle ant genus Cephalotes, suggesting ≥50 million years since domestication. Through new genome sequencing, we also show that divergent I. davidsoniae lineages are conserved in their uricolytic and urea-generating capacities. With phylogenetically refined definitions of Ischyrobacter and separately domesticated Burkholderiales symbionts, our FISH microscopy revealed a distinct niche for I. davidsoniae, with dense populations at the anterior ileum. Being positioned at the site of host N-waste delivery, in vivo metatranscriptomics and metabolomics further implicate I. davidsoniae within a symbiont-autonomous N-recycling pathway. While encoding much of this pathway, I. davidsoniae expressed only a subset of the requisite steps in mature adult workers, including the penultimate step deriving urea from allantoate. The remaining steps were expressed by other specialized gut symbionts. Collectively, this assemblage converts inosine, made from midgut symbionts, into urea and ammonia in the hindgut. With urea supporting host amino acid budgets and cuticle synthesis, and with the ancient nature of other active N-recyclers discovered here, I. davidsoniae emerges as a central player in a conserved and impactful, multipartite symbiosis. 
    more » « less
  5. Free, publicly-accessible full text available January 1, 2026
  6. Free, publicly-accessible full text available November 22, 2025