skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1937627

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The numerous ephemeral glacial meltwater streams that flow during the summer in the McMurdo Dry Valleys of South Victoria Land, Antarctica, provide habitats for microbial mats. One of the common mat types is composed of Chlorophyta (colloquially known as a ‘green mat’ due to its colour). While the presence of these mats is regularly monitored, their taxonomic makeup is still under investigation. Using 18S rRNA gene sequencing, the composition of the chlorophyte-dense mats from between rocks and in the main channel from several streams across two valleys was examined. Samples were maintained in native stream water, and select samples from representative locations were transferred to Bristol Medium. The appearance of other eukaryotic species - diatoms and tardigrades - in these green mats completed this integrated study. The results show that the relative abundance of Chlorophyta was significantly increased with the introduction of inorganic nitrogen from Bristol Medium. Chlorophyte taxa in theHazeniaandPleurastrumgenera dominated the samples across both sample types (rock or exposed) and treatments (Antarctic water or Bristol Medium). Furthermore, a reduction in overall sample diversity was observed in samples in Bristol Medium, suggesting preferential nitrogen utilization by these chlorophytes. 
    more » « less
    Free, publicly-accessible full text available June 18, 2026
  2. The McMurdo Dry Valleys (MDVs) of Antarctica are a mosaic of extreme habitats which are dominated by microbial life. The MDVs include glacial melt holes, streams, lakes, and soils, which are interconnected through the transfer of energy and flux of inorganic and organic material via wind and hydrology. For the first time, we provide new data on the viral community structure and function in the MDVs through metagenomics of the planktonic and benthic mat communities of Lakes Bonney and Fryxell. Viral taxonomic diversity was compared across lakes and ecological function was investigated by characterizing auxiliary metabolic genes (AMGs) and predicting viral hosts. Our data suggest that viral communities differed between the lakes and among sites: these differences were connected to microbial host communities. AMGs were associated with the potential augmentation of multiple biogeochemical processes in host, most notably with phosphorus acquisition, organic nitrogen acquisition, sulfur oxidation, and photosynthesis. Viral genome abundances containing AMGs differed between the lakes and microbial mats, indicating site specialization. Using procrustes analysis, we also identified significant coupling between viral and bacterial communities (p = 0.001). Finally, host predictions indicate viral host preference among the assembled viromes. Collectively, our data show that: (i) viruses are uniquely distributed through the McMurdo Dry Valley lakes, (ii) their AMGs can contribute to overcoming host nutrient limitation and, (iii) viral and bacterial MDV communities are tightly coupled. 
    more » « less