Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available March 15, 2025
-
Unmanned aerial vehicles (UAVs) have witnessed widespread adoption in the modern world, with their development set to continue into the future. As UAV technology and applications advance, it becomes imperative to understand their communication capabilities. UAVs experience distinct radio propagation conditions compared to ground-based radio nodes, necessitating a critical investigation into aerial radio node performance. This paper analyzes interference in UAV-to-UAV (U2U) communications within drone corridors and proposes an interference mitigation strategy utilizing millimeter wave (mmWave) beamforming. Employing a semi-persistent scheduling approach from the Third Generation Partnership Project (3GPP) sidelink communications for low altitude aerial nodes in drone corridors, the study primarily examines interference from drone clusters within designated air corridors. To assess U2U communication performance, a 3GPP standard-compliant cross-layer simulator is developed. Simulation results demonstrate that employing mmWave beamforming instead of isotropic transmission substantially reduces interference, leading to higher communications reliability and enabling more UAVs to occupy and communicate in the airspace.more » « less