Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract The protein–ligand binding affinity quantifies the binding strength between a protein and its ligand. Computer modeling and simulations can be used to estimate the binding affinity or binding free energy using data- or physics-driven methods or a combination thereof. Here we discuss a purely physics-based sampling approach based on biased molecular dynamics simulations. Our proposed method generalizes and simplifies previously suggested stratification strategies that use umbrella sampling or other enhanced sampling simulations with additional collective-variable-based restraints. The approach presented here uses a flexible scheme that can be easily tailored for any system of interest. We estimate the binding affinity of human fibroblast growth factor 1 to heparin hexasaccharide based on the available crystal structure of the complex as the initial model and four different variations of the proposed method to compare against the experimentally determined binding affinity obtained from isothermal titration calorimetry experiments.more » « less
- 
            Schmidt-Krey, Ingeborg; Gumbart, James C. (Ed.)Molecular dynamics (MD) simulations are routinely used to study structural dynamics of membrane proteins. However, conventional MD is often unable to sample functionally important conformational transitions of membrane proteins such as those involved in active membrane transport or channel activation process. Here we describe a combination of multiple MD based techniques that allows for a rigorous characterization of energetics and kinetics of large-scale conformational changes in membrane proteins. The methodology is based on biased, nonequilibrium, collective-variable based simulations including nonequilibrium pulling, string method with swarms of trajectories, bias-exchange umbrella sampling, and rate estimation techniques.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
