skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1940986

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The discovery of liquid battery electrolytes that facilitate the formation of stable solid electrolyte interphases (SEIs) to mitigate dendrite formation is imperative to enable lithium anodes in next‐generation energy‐dense batteries. Compared to traditional electrolyte solvents, tetrahydrofuran (THF)‐based electrolyte systems have demonstrated great success in enabling high‐stability lithium anodes by encouraging the decomposition of anions (instead of organic solvent) and thus generating inorganic‐rich SEIs. Herein, by employing a variety of different lithium salts (i.e., LiPF6,LiTFSI, LiFSI, and LiDFOB), it is demonstrated that electrolyte anions modulate the inorganic composition and resulting properties of the SEI. Through novel analytical time‐of‐flight secondary‐ion mass spectrometry methods, such as hierarchical clustering of depth profiles and compositional analysis using integrated yields, the chemical composition and morphology of the SEIs generated from each electrolyte system are examined. Notably, the LiDFOB electrolyte provides an exceptionally stable system to enable lithium anodes, delivering >1500 cycles at a current density of 0.5 mAh g−1and a capacity of 0.5 mAh g−1in symmetrical cells. Furthermore, Li//LFP cells using this electrolyte demonstrate high‐rate, reversible lithium storage, supplying 139 mAh g(LFP)−1at C/2 (≈0.991 mAh cm−2, @ 0.61 mA cm−2) with 87.5% capacity retention over 300 cycles (average Coulombic efficiency >99.86%). 
    more » « less