skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1941341

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. null (Ed.)
  4. null (Ed.)
  5. null (Ed.)
    The high frequency, low amplitude wing motion that mosquitoes employ to dry their wings inspires the study of drop release from millimetric, forced cantilevers. Our mimicking system, a 10-mm polytetrafluoroethylene cantilever driven through ±1 mm base amplitude at 85 Hz, displaces drops via three principal ejection modes: normal-to-cantilever ejection, sliding and pinch-off. The selection of system variables such as cantilever stiffness, drop location, drop size and wetting properties modulates the appearance of a particular ejection mode. However, the large number of system features complicate the prediction of modal occurrence, and the transition between complete and partial liquid removal. In this study, we build two predictive models based on ensemble learning that predict the ejection mode, a classification problem, and minimum inertial force required to eject a drop from the cantilever, a regression problem. For ejection mode prediction, we achieve an accuracy of 85% using a bagging classifier. For inertial force prediction, the lowest root mean squared error achieved is 0.037 using an ensemble learning regression model. Results also show that ejection time and cantilever wetting properties are the dominant features for predicting both ejection mode and the minimum inertial force required to eject a drop. 
    more » « less
  6. null (Ed.)
  7. null (Ed.)